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Abstract

Autonomous cars establish driving strategies using the
positions of ego lanes. The previous methods detect lane
points and select ego lanes with heuristic and complex post-
processing with strong geometric assumptions. We propose
a sequential end-to-end transfer learning method to esti-
mate left and right ego lanes directly and separately without
any postprocessing. We redefined a point-detection problem
as a region-segmentation problem; as a result, the proposed
method is insensitive to occlusions and variations of envi-
ronmental conditions, because it considers the entire con-
tent of an input image during training. Also, we constructed
an extensive dataset that is suitable for a deep neural net-
work training by collecting a variety of road conditions,
annotating ego lanes, and augmenting them systematically.
The proposed method demonstrated improved accuracy and
stability on input variations compared with a recent method
based on deep learning. Our approach does not involve
postprocessing, and is therefore flexible to change of target
domain.

1. Introduction

Deep learning understands the world by analyzing the
context of a scene, then focusing on important objects
and observing them at a hierarchy of levels, from narrow
with high resolution, to broad with low resolution. There-
fore, when understanding a scene, deep learning is rela-
tively insensitive to variations of environmental condition,
and is inexpensive to redesign, to respond to different tar-
gets. For deep learning to achieve high accuracy, it needs
a large amount of high-quality data. Therefore, much of
the progress in deep learning, specifically in supervised
deep-network learning, can be attributed to the availabil-
ity of huge image datasets such as ImageNet [42], Activi-
tyNet [18], MS COCO [32], Open Images [25], YouTube-
8M [1], and YouTube-BB [39]. Recently, in the field of au-

Figure 1. The proposed method transfers the learned representa-
tions of a deep network through sequential representation domain
change and reduction. The transferred network extracts left and
right ego lanes directly and separately from input image without
any postprocessing.

tonomous driving, various datasets have been published in-
cluding CamVid [9], KITTI [16], TORCS [10], GTA5 [40],
Cityscapes [12], and SYNTHIA [41]. Those datasets focus
on high-level scene understanding by semantic segmenta-
tion. Semantic segmentation is essential for an autonomous
driving intelligence to understand the complex situations of
a scene. Segmenting objects, including static and moving
objects, in a scene means that we can simultaneously detect
and classify all objects; the results can be used to analyze
the properties of objects and the relations between them.
This paper presents a method to adopt abundant semantic
information for ego lane estimation using newly constructed
datasets and networks developed for high-level scene seg-
mentation (Fig. 1). This method is effective because con-
sidering the complete scene, rather than parts of it, reduces
the deep networks sensitivity to problems such as occlusion
by vehicles and pedestrians, rough road condition, blurred
lane markings, low illumination at the evening, and other
variations of road surface due to environmental conditions.

The contributions of this paper are: 1) an end-to-end esti-
mation process of left and right ego lanes from an input im-
age directly and separately using sequential transfer learn-
ing, without any postprocessing, 2) a semi-automatic ego
lane annotation tool to reduce the effort required to con-
struct a new dataset for our end-to-end approach, and 3) a
large dataset construction with extensive data augmentation
to train a deep neural network. We present related work in



Section 2, details of our approach in Section 3, experimental
results in Section 4 and a conclusion in Section 5.

2. Related Work
Model-driven approaches. Many papers have reviewed
lane detection based on model-driven approaches [50, 19,
27]. Most of the methods involve stages such as prepro-
cessing, feature extraction, line fitting and lane-parameter
estimation. The problem of designing and combining hand-
crafted features with the model is very important. Mainly
three features (edge, color, texture), are defined by four
types of model [27]. The first type finds strong edge com-
ponents in an image and uses the combination of a Sobel
filter and Hough Transform [51, 3, 5, 31, 13, 28] to ana-
lyze the strong edge direction. The accuracy of the original
Hough Transform was improved by the Statistical Hough
Transform that uses a multiple kernel density to describe
the distribution of the Hough variables without edge prepro-
cessing [33, 34, 35]. Some researchers used IPM to change
the point of sight and found all straight lines [2, 6, 33, 7].
The second type observes the change of feature values. To
detect lanes, these method detect a large change of intensity
[24, 22] or measure the positive and negative second deriva-
tives of edge components [30]. The third type analyzes
the primary color or direction of lane components. These
methods segregate pixels by exploiting primary color infor-
mation of lanes [11, 52, 8], or extract lanes by clustering
straight lines that point in similar directions and removing
outliers [47]. The fourth type defines models with specific
shapes, then performs model fitting on a feature image. For
example, various models that represent straight or curved
lines (e.g., linear, parabolic, B-spline), are each matched to
a sub-window that has feature values extracted on geomet-
ric constraints [53, 46, 48, 49]. All of these model-driven
approaches use hand-crafted features that is elaborately de-
signed dependent on target’s properties and need heuristic
and complex postprocessing with strong geometric assump-
tions to determine the positions of ego lanes. Therefore, if
the target is change, the design of features should be modi-
fied.
Approaches based on deep learning. To overcome lim-
itations of model-driven approaches, recent research has
adopted deep learning, specifically convolutional neural
networks (CNNs), for lane detection. One method extracts
lane candidate regions and uses the RANSAC algorithm to
remove outliers and to perform line fitting [23], but because
the CNN uses an edge image as input, the method’s accu-
racy is directly affected by that of the edge-detection algo-
rithm, which is sensitive to intensity variations and occlu-
sion; in the paper, the CNN was only to extract features,
and did not consider full context of an input image. An-
other method predicts two end points of a local lane seg-
ment in a sliding window by regression using a CNN [20];

it uses local context of a scene by considering occlusion
cases to obtain ground truth. Another combines multi-
task CNN and RNN to detect lane boundaries [29]. To
select ego lanes and separate left and right lanes, the two
previous methods performed postprocessing including DB-
SCAN, line clustering, and heuristic selection. A different
approach uses use two laterally-mounted down-facing cam-
eras to estimate the position of lanes with sub-centimeter
accuracy [17], but because of the orientation of the cam-
eras the method cannot exploit all of the information in the
scene. Another approach adds an expansion network to a
CNN and trains the network end-to-end for estimation of
ego lane [38]. To achieve best trade-off between segmen-
tation quality and runtime, several architecture refinements
were added, but the method cannot estimate exact left and
right ego lanes (two side-curves) because it consider a re-
gion that is surrounded by the two side-curves. Our pro-
posed method extracts the left and right ego lanes directly
and separately from an input image and utilizes all informa-
tion in the front road scene by an end-to-end technique to
improve accuracy.

3. Semantic Ego Lane Estimation

3.1. Problem Redefinition

Model-driven methods detect lane markings by observ-
ing a large change of feature values in a sub-region sur-
rounding each pixel. Previous deep-learning based meth-
ods also analyzed the existence possibility of lane markings
by considering the sub-region surrounding a pixel. These
methods can be defined as a point-detection problem on lo-
cal context. The results are lane segments; they should be
clustered into groups that share similar properties such as
position and direction, then classified as two ego lanes by
additional heuristic steps. Methods based on deep learning
solve the challenges of the lane detection more efficiently
than model-driven methods. But, because methods based
on deep learning train the CNN on an edge image, rather
than on the original image [23], or consider the context only
within a sub-image rather than the entire image [20], or es-
timate lane positions in a fully-connected layer using the
information missed by numerous convolution and pooling
layers [29, 17], they cannot fully exploit the information
included in driving situation. We overcame these limita-
tions by redefining the point-detection problem as a region-
segmentation problem. This change of perspective, from
point to region and from sub-context to full context, reduces
the sensitivity of our approach to occlusion, degraded mark-
ings and various road conditions. For example, if a scene
consists of roads and background, we can estimate the po-
sitions of ego lanes, even if they have poor texture. In our
approach, the results of segmentation into left and right ego
lane regions can be used to adjust the driving direction di-



Figure 2. Semi-automatic interface to annotate left and right ego
lanes. Original image (left). Annotation of lane points (center).
Fitted curves (right).

rectly because they involve the information already. Also,
we can use abundant scene segmentation datasets as pre-
knowledge for lane region segmentation.

3.2. Dataset Generation of Ego Lanes

KITTI is very useful and famous dataset to evaluate a lot
of functions for autonomous driving cars. Among various
categories, lane dataset consists of 95 training and 96 test
images. We wanted to construct and share a larger dataset
that included more various highway and urban road con-
ditions. So, we constructed a new dataset to segment ego
lanes through end-to-end estimation. In advance, to reflect
various road conditions, we downloaded black box videos
of America, Europe and Asia from Youtube site. Their im-
ages includes various curved road as well as straight road.
We also use Grand Theft Auto V (GTA5) and TORCS
games to consider more various situations with less effort.
The set of real data consists of 10,680 images (50 video
clips, 5 hours 56 minutes, 5.43 GB). The set of virtual data
consists of 960 images (2 videos, 32 minutes, 2.13 GB).
Because high-quality game simulations describe real world
concretely with a variety of scenarios that cannot be gener-
ated in real situations, recent research has used them very
actively [10, 40].

To remove duplicated images and select representative
scenes, we collected 4,000 images by sampling at an ap-
propriate frame interval. The frame interval varies from
30 to 100 to obtain the same number of images from each
video clip. We developed a semi-automatic annotation tool
to change the collected images into training data, then used
Matlabs interface to annotate left and right ego lanes for
each image (Fig. 2). After marking the two end points of
a left ego lane, we additionally marked three middle points

in which the line direction changes between two end points.
We selected the upper endpoint considering that all points
will be fitted using a second-order polynomial curve. The
right ego lane was also marked using the same process. To
ensure the quality of the ground truth points, cross-checks
were done through multiple people, and if the current frame
had occlusion cases, the previous and next frames were ref-
erenced. Then two second-order polynomial curves were
drawn using ten points, then the original image and four ver-
sions of it were saved for verification; these were: (1) a bi-
nary image with lane points, (2) a dilated binary image with
lane regions, (3) a dilated color image with different colors
on the left and right ego regions, and (4) a dilated gray im-
age with different indexes on the left and right ego regions.
The images used for training deep network were the original
RGB image and image (4). We use the dilated lane region,
not the line image, to represent the lane width as one con-
text in our training process because a real lane is a region
with a width value. We randomly selected 25% of images
(1,000 images) as test data, and used the rest (3,000 images)
as training data. To include a variety external environmen-
tal conditions, we performed extensive training data aug-
mentation by scaling, blurring, translation, rotation, noise,
and illumination. We used Matlab’s various functions and
parameters; imresize(0.8 1.4), imgaussfit(-1.0 2.5), pixel
shift(-6 12), imrotate(-2 3), imnoise(gaussian, poisson, salt-
pepper, speckle), and imadjust((-1.0,-1.0) (0.3 0.9)). We
produced at most 30 versions of each image (i.e., 6 tech-
niques by 5 parameters); the result was 90,000 image pairs
for deep network training.

3.3. Learning Semantic Ego Lanes

Network Architecture In the region-segmentation prob-
lem, if the number of categories increases, the problem be-
comes one of scene segmentation. Recently, various net-
works have been proposed for pixel-level scene segmen-
tation. FCN [36, 43] uses networks that consist of only
convolution and pooling layers by eliminating the fully-
connected layer from AlexNet [26], VGG-net [44], and
GoogLeNet [45]. Two groups [37, 4] generated a seg-
mented image with the same size of input image by adding
upsampling networks. In this paper, we used SegNet [4]; it
was mainly trained and evaluated with road scene data and
has shown fast processing for real-time autonomous driv-
ing. The network consists of a convolution network (i.e., an
encoder), which extracts features by hierarchical abstrac-
tion, and a deconvolution network (i.e., a decoder), which
reconstructs a segmented image by upsampling. The convo-
lution network has same structure as the first 13 convolution
layers of the VGG15 network, and generates feature maps.
To solve the gradient vanishing and exploding problem and
to reduce the number of iterations taken for loss conver-
gence in training process, it also includes batch normaliza-



Figure 3. Overall procedure of the proposed sequential end-to-end transfer learning. VGG-net pre-trained on ImageNet dataset (first
network) is symmetrically concatenated as a deconvolution network. The modified network is trained to segment each class component
through representation domain change from general scene objects to road scene object (second network). Lastly, the transferred network is
trained to extract left and right ego lanes by representation domain reduction from road scene objects to ego lane objects (last network).

tion [21] technique and uses a rectified linear unit (ReLU) as
an activation function. The deconvolution network has de-
convolution layers that correspond to the convolution layers
and performs upsampling. The main idea of the method is to
use max-pooling indices memorized in each pooling layer
of convolution network. After passing the final deconvolu-
tion layer, they use trainable multi-class soft-max classifier
to categorize each pixel.
Network Training We used two techniques for our end-to-
end training and inference that consider the full content of a
scene. The first technique was to acquire the contexts of var-
ious objects in a scene, then to transfer the learned represen-
tations of the deep network over two stages. Transfer learn-
ing [14] is a method that can use the representation abil-
ity obtained from huge amounts of another domain’s data
when our target domain does not have enough training data.
For road scene segmentation, we performed a fine-tuning on
published datasets, such as CamVid, Cityscapes, and GTA5.
To train the network, we used stochastic gradient descent
method with the same hyper-parameters with SegNet [4] in-
cluding learning rate, momentum, and loss function. This
process changes the feature representation domain of a net-
work from general scene objects included in the ImageNet
dataset, to road scene objects (Fig. 3, gray network). The
second technique was to use the data obtained from our an-
notation tool and image amplification, to reduce again the
domain from road scene objects to left or right ego lanes
(Fig. 3, blue network). The input for this second transfer
learning consists of 480x360 RGB images, and the output
consists of ground truth images that are indexed into three
categories: left ego lane region, right ego lane region, and
background region, each labeled with a unique integer start-
ing from zero. For both of two transfer learning, we applied
a class balancing technique to assign the weight differently
in the loss function according to the ratio of class frequency.
During this second transfer learning using the same hyper-
parameters with the first transfer learning, the time required
to converge a cross-entropy loss is much shorter and the
network’s region segmentation ability increases because the

number of target categories is much less than the number of
categories of road scene.

To overcome challenges [50, 19, 27] such as occlusion,
shadow, degradation, illumination, print quality, weather
conditions, road geometries, and extraneous objects, the de-
sign of the ground truth data is also important. If lane mark-
ings are invisible for various reasons, human drivers recog-
nize the whole context, estimate ego lanes intuitively, and
drive on the correct path. Applying the same principle, we
generated the ground truth data of ego lanes. If ego lanes
were briefly invisible, we used our intuition obtained from
the previous scenes to annotate the estimated region. In this
way, by using data generated based on the logic that humans
use while driving, our deep network can recognize ego lane
under various road-surface conditions.

4. Experiments

We evaluated the accuracy of ego lane recognition. Each
test image represents a unique road scene. The evaluation
and analysis was performed from three distinct viewpoints:
1) network’s representation ability dependent on different
datasets used in the first transfer learning, 2) network’s in-
ference accuracy dependent on various data augmentation
ratios used during the second transfer learning, and 3) net-
work’s identification stability in a variety of input varia-
tions.

Two measurements were used for these three experi-
ments. One is composed of region-based precision and
recall to evaluate the region segmentation accuracy of ego
lanes. These measures are defined as

precision =
TP

TP + FP
, recall =

TP

TP + FN
, (1)

where TP is the number of True Positives (i.e., the number
of ego lane pixels correctly classified), FP is the number of
False Positives (background pixels classified as ego lanes),
and FN is the number of False Negatives (ego lane pixels
classified as background). Because KITTI dataset and our



Figure 4. Definitions of ego lane of KITTI (a) and our dataset (b).
Examples of TP, TN, FP, FN, region-based precision, and recall
for KITTI (c) and our dataset (d). Dash lines mean the boundaries
of estimated result.

paper use different meaning of ’ego lane’, we used differ-
ent metric. In KITTI dataset, ego lane means a wide region
that is surrounded left and right ego lanes (Figure 4(a)). So,
although the two side curves are not exact, precision and
recall values are not low if the overall region is extracted
well (Figure 4(c)). In our paper, ego lanes mean two nar-
row regions corresponding two side curves themselves (Fig-
ure 4(b)). The evaluation using these definition makes us to
estimate more exact two side-curves (Figure 4(d)). Accu-
rate estimation of left and right ego lanes (curves) is very
important for lane departure warning, lane change assis-
tance, forward collision avoidance (advanced driver assis-
tance system), and self-driving (autonomous driving).

Another measure is line-based accuracy to evaluate the
direction estimation of ego lanes (Figure 5). This statistic is
defined as

accuracy =
RGT ∩RL,R

RL,R
, (2)

where RGT means the ground truth area of ego lane regions
and RL,R means the area that was identified to be left or
right ego lanes, and we ignored the lower 8% of an input
image because ego lanes are occasionally occluded by the
bonnet of a car. We evaluated line-based accuracy because,
unlike the proposed method that extracts left and right ego
lanes directly and separately, the existing methods sepa-
rate ego lanes by applying postprocessing after detecting all
lanes. Thus, the method cannot define FP and FN for their
naive outputs before postprocessing. This second metric is
very reasonable because real lane has a little width. That is,
after we fit the extracted two ego lanes into 2nd polynomial
curves, we computed the overlapped ratio between the fitted
line and ground-truth region. Then, if the fitted curve is in-
cluded within the width, the result is decided as reasonably
good.

Figure 5. Examples of the line-based accuracy.

Dataset Images Resolution Classes
CamVid 701 960x720 32 (11)
Cityscapes (fine) 5,000 2,048x1,024 30
GTA5 24,966 1,914x1,052 19

Table 1. The overview of published datasets for semantic scene
segmentation.

4.1. Importance of Sequential Domain Change

Many published datasets (Table 1) are suitable for the
first transfer learning. We used them to analyze the effect
of different datasets on network’s representation ability. For
CamVid dataset, in common with [4], we used 11 classes for
the first transfer learning and it is reasonable because it has
much less number of images among datasets. Cityscapes
has highest resolution and includes very various kinds of
cities with the most classes. GTA5 has much more images
than other datasets with middle resolution and classes. We
performed transfer learning to change the feature represen-
tation domain from general scene objects to road scene ob-
jects, and measured the scene segmentation accuracy. We
did not use all datasets together, because they have differ-
ent numbers of categories, so we applied median frequency
balancing [15] for each dataset. The method achieved the
highest scene segmentation accuracy in the fewest iterations
on the CamVid dataset (Fig. 6, left), because this dataset has
fewer categories and less number of images than the other
datasets. Cityscape 5,000 and GTA5 24,966 need more iter-
ations to obtain enough accuracy. But this is just the scene
segmentation result on different datasets, not the region seg-
mentation result of ego lanes, so we performed the second
transfer learning using the same ego lane dataset that we
collected (Fig. 6, right). After 20,000 iterations, there is
no difference between ego lane segmentation accuracy of
five datasets; this result means that the accuracy of the first
transfer learning is not directly related to one of the second
transfer learning in terms of the accuracy. The important
thing is that increasing the number of categories considered
in the first transfer learning improves the network’s repre-
sentation ability at the second transfer learning with much
less iterations. If we perform the second transfer learning
without the first transfer learning, we need much more iter-
ations to achieve the comparable high accuracy(Fig. 6, right
(None)).

Also, we measured the precision, recall, and F measure



Figure 6. (Left) Scene segmentation accuracy during 100,000 iterations at the first transfer learning. The numbers, 701, 5,000, and 24,966
mean the number of images that is used in training. (Right) Lane segmentation accuracy during 30,000 iterations at the second transfer
learning. The accuracy converges with much less iterations compared with the first transfer learning.

Dataset Precision Recall F0.5 measure
CamVid 701 0.37 0.77 0.41
Cityscapes 701 0.39 0.58 0.42
Cityscapes 5,000 0.43 0.54 0.45
GTA5 701 0.33 0.78 0.37
GTA5 24,966 0.31 0.69 0.35

Table 2. Precision, recall, and F0.5 measure of averaged total ego
lanes. Because precision is more important than recall in driv-
ing lane estimation (false detection is much more dangerous than
missed detection), we used β = 0.5.

Figure 7. Comparison of ego lane estimation without(single
TL)/with(sequential TL) the first transfer learning. Especially, in
shadow, tunnel, and overpass, the network with the first transfer
learning recognizes well the left and right ego lanes.

of ego lane regions using test data (Table 2). The deep net-
work trained using Cityscapes 5,000 (full) dataset showed
the most reasonable results when we consider the trade-off

Figure 8. Comparison of direction estimation accuracy with aug-
mented training data from regression, single TL network (without
the first transfer learning), and our sequential TL network. (Left)
left ego lane. (Right) right ego lane. 1x, 6x, 12x, 18x, 24x, and
30x, represent that set Nx consists of N x 103 images.

between precision and recall values. Because the number
of our ground-truth pixels is much less than KITTI dataset,
there are big gaps of precision and recall values. In our
definition of ego lanes, if the direction of detected two ego
lanes is a little different with the ground-truth, then preci-
sion and recall decrease rapidly. For various road condi-
tions, sequential transfer learning (TL) on Cityscapes 5,000
shows accurate and stable estimation results (Fig. 7), so we
selected this network for following experiments.

4.2. Extensive but Reasonable Data Augmentation

We measured the direction estimation accuracy to eval-
uate the amplification effect of our training data on net-
work’s inference performance. From Sec 4.1, we selected
the network that is trained using Cityscapes 5,000 as the
base model and performed the second transfer learning by
fine-tuning for different data augmentation ratios. We com-
pared our proposed method with a recent regression method
based on deep learning [20]; this method predicts two end



Figure 9. Comparison of direction estimation accuracy with aug-
mented test data from regression and our network. Left ego lane
(left). Right ego lane (right).

points of lane segments in each sliding window and clusters
them using DBSCAN. Because we compare the ego lane
direction, we selected among the clustered lanes the two
that are closest to the center of an input image. The reason
that we select the method is it generates lane curves not a
wide region that is surrounded by curves. At the 1x aug-
mentation ratio (no augmentation) or small amount of train-
ing data, the proposed method obtained much higher accu-
racy (Fig. 8) because it considers all information in a scene,
rather just parts of it. Also, the proposed method achieved
higher direction estimation accuracy for most cases. Re-
gression method was more closely related to training data
augmentation than our method, because the local informa-
tion of a sub-region is much more affected by the augmen-
tation techniques than the full context of an image. In either
method, direction estimation did not provide better than us-
ing the 18x augmentation ratio because unnecessary images
were added to training data in 24x and 30x. This result im-
plies the existence of reasonable augmentation ratio with
only the data that affect the accuracy; more training data
augmentation than the reasonable criterion do not help im-
prove the accuracy.

4.3. Robustness For Road Variations

In the previous Section, we evaluated the augmenta-
tion effect of training dataset on the fixed test dataset.
Lastly, we evaluated the robustness of the ego lane recog-
nition on various input road conditions on the fixed train-
ing dataset (no augmentation). From Section 4.2, we se-
lected three models (1x) for regression, single TL, and
sequential TL methods. We amplified the test data in-
stead of the training data by applying image-processing
techniques including scaling, blurring, translation, rotation,
noise, and illumination (Sec. 3.3). The input variations
represent diverse outputs from a camera mounted in a ve-
hicle, such as low-resolution images, installation-position
change, installation-angle change, noise caused by a faulty
camera, and low illumination during the evening. Using
five parameters of each amplification technique, we set six
sets of test images: 1x, 6x, 12x, 18x, 24x, and 30x, where
set Nx consists of N x 103 images. For each amplifica-

tion ratio, we compared the direction estimation accuracy
(Fig. 9). The accuracy of three methods was little affected
(< 4%) by the input variations. Our proposed sequential TL
method achieved higher direction estimation accuracy (left
ego lane, right ego lane, full ego lanes) than the regression
model and single TL method in all sets regardless of input
variations, even when the camera state or the external envi-
ronmental condition changed severely. Especially, our pro-
posed method represented better estimation results under
rough road conditions and low illumination environments
(Fig. 10), where the straight road is often seen because the
proportion of the highway images is higher than the urban
images. These results indicate that ego lane segmentation
stabilizes when all information in the scene is considered.

5. Conclusion
We proposed a method of semantic ego lane estima-

tion to train a deep network based on sequential end-to-end
training and to recognize left and right ego lanes without
postprocessing directly and separately. The method uses
two transfer learning steps. The first step changes the net-
work’s representation domain from a general scene to a
road scene; the second step reduces the target from road
objects in general, to left and right ego lanes in particular.
Because this sequential domain change is based on region
segmentation that considers the full context of a scene, the
proposed method recognizes ego lanes with low sensitiv-
ity to road conditions. Also, the end-to-end approach re-
duces re-design and re-optimization during data modifica-
tion and eliminates the possibility that postprocessing gen-
erates errors. By modification and extension of our target
data, the proposed approach can support more detailed in-
formation for to support driving situation decisions or to
establish driving strategies.

References
[1] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,

B. Varadarajan, and S. Vijayanarasimhan. Youtube-
8m: A large-scale video classification benchmark.
arXiv:1609.08675, 2016.

[2] M. Aly. Real time detection of lane markers in urban streets.
In IVS, 2008.

[3] A. Assidiq, O. Khalifa, R. Islam, and S. Khan. Real time
lane detection for autonomous vehicles. In ICCCE, 2008.

[4] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image
segmentation.

[5] A. Borkar, M. Hayes, M. Smith, and S. Pankanti. A layered
approach to robust lane detection at night. In CIVVS, 2009.

[6] A. Borkar, M. Hayes, and M. T. Smith. Robust lane detection
and tracking with ransac and kalman filter. In ICIP, 2009.

[7] A. Borkar, M. Hayes, and M. T. Smith. Polar randomized
hough transform for lane detection using loose constraints of
parallel lines. In ICASSP, 2011.



Figure 10. Example of semantic ego lane estimation results with augmented test data; these were: (first row) input image, (second row)
ground-truth ego lanes, (third row) estimated left/right ego lanes by our method without post-processing, and (fourth row) estimated lane
points by regression method, where shaded regions are just for separation between lane points and background. To estimate left and right
ego lanes as a second-order polynomial curve, the regression method needs additional postprocessing such as line clustering and ego lane
separation based on geometric assumptions.

[8] V. S. Bottazzi, P. V. Borges, and B. Stantic. Adaptive regions
of interest based on hsv histogram for lane marks detection.
Robot Intelligence Technology and Applications 2, 274:677–
687.

[9] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object
classes in video: A high-definition ground truth database.
Pattern Recognition Letters, 2008.

[10] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriv-
ing: learning affordance for direct perception in autonomous
driving. In ICCV, 2015.

[11] H. Y. Cheng, C. C. Yu, C. C. Tseng, K. C. Fan, J. N. Hwang,
and B. S. Jeng. Hierarchical lane detection for different types
of roads. In ICASSP, 2008.

[12] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding.
In CVPR, 2016.

[13] P. Daigavane and P. Bajaj. Road lane detection with im-
proved canny edges using ant colony optimization. In
ICETET, 2010.

[14] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: a deep convolutional acti-
vation feature for generic visual recognition. In ICML, 2014.

[15] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In ICCV, 2015.

[16] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In
CVPR, 2012.

[17] A. Gurghian, T. Koduri, S. V. Bailur, K. J. Carey, and V. N.
Murali. Deeplanes: end-to-end lane position estimation us-
ing deep neural networks. In CVPRW, 2016.

[18] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles.
Activitynet: A large-scale video benchmark for human ac-
tivity understanding. In CVPR, 2015.

[19] A. B. Hillel, R. Lerner, D. Levi, and G. Raz. Recent progress
in road and lane detection: a survey. Machine Vision and
Applications, 25:727–745, 2014.

[20] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song,
J. Pazhayampallil, M. Andriluka, P. Rajpurkar, T. Migi-
matsu, R. C. Yue, F. Mujica, A. Coates, and A. Y. Ng. An
empirical evaluation of deep learning on highway driving.
arXiv:1504.01716, 2015.

[21] S. Ioffe and C. Szegedy. Batch normalization: accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015.



[22] H. Jung, J. Min, and J. Kim. An efficient lane detection al-
gorithm for lane departure detection. In IV, 2013.

[23] J. Kim and M. Lee. Robust lane detection based on convo-
lutional neural network and random sample consensus. In
ICONIP, 2014.

[24] Z. Kim. Robust lane detection and tracking in challenge sce-
narios. IEEE Transactions on Intelligent Transportation Sys-
tems, 9(1):16–26, 2008.

[25] I. Krasin, T. Duerig, N. Alldrin, A. Veit, S. Abu-El-Haija,
S. Belongie, D. Cai, Z. Feng, V. Ferrari, V. Gomes, A. Gupta,
D. Narayanan, C. Sun, G. Chechik, and K. Murphy. Openim-
ages: A public dataset for large-scale multi-label and multi-
class image classification. https://github.com/openimages,
2016.

[26] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS,
2012.

[27] A. M. Kumar and P. Simon. Review of lane detection and
tracking algorithms in advanced driver assistance system. In-
ternational Journal of Computer Science Information Tech-
nology, 7(4):65–78, 2015.

[28] Y. C. Leng and C. L. Chen. Vision-based lane departure de-
tection system in urban traffic scenes. In ICARCV, 2010.

[29] J. Li and X. Mei. Deep neural network for structural predic-
tion and lane detection in traffic scene. IEEE Transactions
on Neural Networks and Learning Systems, 2016.

[30] C. W. Lin, H. W. Yang, and D. C. Tseng. A robust lane
detection and verification method for intelligent vehicles. In
IITA, 2009.

[31] Q. Lin, Y. Han, and H. Hahn. Real-time lane detection based
on extended edge-linking algorithm. In ICCRD, 2010.

[32] T. Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,
J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar.
Microsoft coco: Common objects in context. In ECCVW,
2016.

[33] G. Liu, F. Worgotter, and I. Markeli’c. Combining statistical
hough transform and particle filter for robust lane detection
and tracking. In IV, 2010.

[34] G. Liu, F. Worgotter, and I. Markeli’c. Lane shape estimation
using a partitioned particle filter for autonomous driving. In
ICRA, 2011.

[35] G. Liu, F. Worgotter, and I. Markeli’c. Stochastic lane shape
estimation using local image descriptors. IEEE Transactions
on Intelligent Transportation Systems, 14(1):13–21, 2013.

[36] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[37] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In ICCV, 2015.

[38] G. L. Oliveira, W. Burgard, and T. Brox. Efficient deep mod-
els for monocular road segmentation. In IROS, 2016.

[39] E. Real, J. Shlens, S. Mazzocchi, and X. Pan. Youtube-
boundingboxes: A large high-precision human-annotated
data set for object detection in video. arXiv:1702.00824,
2017.

[40] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for
data: ground truth from computer games. In ECCV, 2016.

[41] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M.
Lopez. The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In CVPR,
2016.

[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[43] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional
networks for semantic segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2016.

[44] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[45] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015.

[46] M. Tan, B. Paula, and C. R. Jung. Real-time detection and
classification of road lane markings. In SIBGRAPI, 2013.

[47] T. T. Tran, H. M. Cho, and S. B. Cho. A robust method for
detecting lane boundary in challenging scenes. Information
Technology Journal, 10(12):2300–2307, 2011.

[48] S. C. Tsai, B. Y. Huang, Y. H. Lin, C. W. Lin, C. S. Tseng,
and J. H. Wang. Novel boundary determination algorithm for
lane detection. In ICCVE, 2013.

[49] J. Wang, T. Mei, B. Kong, and H. Wei. An approach of lane
detection based on inverse perspective mapping. In ITSC,
2014.

[50] S. Yenikaya, G. Yenikaya, and E. Duven. Keeping the vehi-
cle on the road - a survey on on-road lane detection systems.
ACM Computing Survey, 46(1), 2013.

[51] Y. U. Yim and S. Y. Oh. Three-feature based automatic
lane detection algorithm (tflda) for autonomous driving.
IEEE Transactions on Intelligent Transportation Systems,
4(4):219–225, 2003.

[52] H. Zhao, Z. Teng, H. H. Kim, and D. J. Kang. Annealed
particle filter algorithm used for lane detection and tracking.
Journal of Automation and Control Engineering, 1(1), 2013.

[53] S. Zhou, Y. Jiang, J. Xi, J. Gong, G. Xiong, and H. Chen. A
novel lane detection based on geometrical model and gabor
filter. In IV, 2010.


