MAVEN (Managing Automated Vehicles Enhances Network)

MAVEN use cases

Ondřej Přibyl Czech Technical University in Prague

Stakeholder Workshop Barcelona

Agenda

- **1.** Definition of MAVEN scope
- 2. Presentation of major Use Cases
- 3. Discussion

Commission

Objectives

- To achieve a common understanding with respect to the MAVEN's scope and coverage
- Basis for discussions / questionnaires

Commission

MAVEN - High level system decomposition

Use case definition

- Describes (high-level) <u>behaviour</u> of a system
- and <u>interaction with actors</u> to achieve an objective in a specific context.

Commission

Use cases – An Overivew

Platoon management

- UC1: Platoon initialisation
- UC2: Joining a platoon
- UC3: Leaving a platoon
- UC4: Platoon break-up

UC5: Speed change advisory (GLOSA)
UC6: Departure from intersection
UC7: Lane change advisory
UC8: Emergency situations
Signal optimisation
UC9: Priority management

- UC10: Queue length estimation
- UC11: Local level routing
- UC12: Network coordination green wave
- UC13: Signal optimisation

UC14: Negotiation

- UC15: Signalling to other road users
- UC16: Detect cooperative vehicles
- UC17: Detect non-cooperative vehicles

Commission

UC1: Platoon initialisation

Objectives

• A cooperative vehicle is triggered to form a platoon with a another cooperative vehicle

Commission

UC2: Joining a platoon

Objectives

- After triggering, a non-platooning vehicle joins a platoon
 - Intersection triggers platooning

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

UC3: Leaving a platoon

Objectives

A cooperative platooning vehicle leaves a platoon

UC4: Platoon break-up

Objectives

- A platoon is triggered to stop platooning
- All vehicles will leave the platoon at a certain moment

UC5: Speed change advisory (GLOSA)

Objectives

- A vehicle is given a speed advice to approach an intersection at arrive at green.
- This use case is needed to give speed advice to the vehicles to optimize the usage of green time at a TLC controlled intersection.

European

Commission

UC6: Departure from intersection

Objectives

- Coordinated movement of vehicles in the intersection zone to ensure quick clearance.
- This use case is needed for automated vehicles stopped at a traffic light to be directly or indirectly requested to depart from an intersection by an intelligent traffic light.

UC7: Lane change advisory

Objectives

- A vehicle is triggered to change lanes
- Traffic is distributed making optimal use of available capacity.
- Based on queue length estimation

UC9: Emergency situations

Objectives

- Reaction to unexpected emergency situation
 - ✓ vulnerable road user entering the road
 - imminent crash on the lane
 - take-over situation, when one vehicle is not able to provide high automation and has to shift back control to the human driver urgently

UC10: Priority management

Objectives

- The objective of this use case is to balance the priorities according to the policies set by the road operator
- Different roles
 - unequipped vehicles,
 - ✓ VRUs,
 - emergency vehicles,
 - trucks,
 - public transport,
 - equipped vehicles and
 - platoons

- Different policies
 - delay [seconds] * number of vehicles
 - Overall emissions
 - Sum of overall travel times
 - And others

UC11: Queue length estimation

Objectives

- Estimate the length of queues with lane precision
- Based on traditional data sources
 - Inductive loops
 - as well as additional ones, such as
 - Communication from cooperative vehicles
 - Floating car data
 - And others

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

UC12: Local level routing

Objectives

- Knowing the traffic light plans in advance can be beneficial for routing when two routing alternatives are very similar on a macro-level (e.g. distance, average travel time).
- This can result in knowing whether it's likely to get a green wave on one route alternative or if a queue is about to grow beyond the capacity of one cycle.

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

Commission

UC13: Network coordination – green wave

Objectives

- to create a dynamic green wave for autonomous and cooperative vehicles
- in close cooperation with GLOSA speed advice with less impact on other traffic than traditional green wave systems have
 - ✓ With the help of queue length estimations
 - Using Speed and Lane change advisory

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

UC14: Signal optimisation

Objectives

- Improve controller performance (reduced average delay and stops
 - for all traffic) by using new data
 - Data from cooperative vehicles
 - Lane based queue lengths
 - Routing knowledge
 - Dynamic priorities
- Stabilize the signal plan for approaching vehicles with speed advice

UC15: Negotiation

Objectives

MAVEN

000

- C-ITS can enable negotiation strategies according to which cooperative automated vehicles and cooperative traffic lights exchange information about intentions and possibilities in a way to provide optimal traffic flows at intersections.
- Performing a bidirectional exchange of information for negotiations using communications from Infrastructure and vehicles and back.

Commission

UC16: Signalling to other road users

Objectives

- A vehicle indicates his current cooperative status to any other vehicle.
 - Using V2V communication
 - Signaling to non-cooperative vehicles

UC17-18: Detect cooperative/non-cooperative vehicles

Objectives

- To detect presence of other vehicles as well as VRU in an intersection
- Based on different sensing and communication technologies

Discussion ?!

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

Thank you!

Contact:

Ondřej Přibyl Associate professor

Czech Technical University in Prague Na Florenci 25, Praha 1, Czech Republic

pribylo@fd.cvut.cz

Commission