State of the art in autonomous driving

German Aerospace Center *DLR* Institute of transportation systems

Smart Cities Symposium Prague 2017 Dr.-Ing. Reza Dariani

Knowledge for Tomorrow

DLR at a glance

<u>D</u>eutsche Zentrum für <u>L</u>uft- und <u>R</u>aumfahrt (DLR) German Aerospace Center

- 8000 employees
- 20 locations in Germany
- Outside Germany: Brussels, Paris, Tokyo and Washington D.C.

Institute of transportation systems:

- Automotive
- Railway Systems
- Traffic Management

Why Autonomous Vehicles?

Trend in the number of persons killed in road traffic accidents Thousand

© 🛄 Statistisches Bundesamt (Destatis), 2017

Autonomous vehicles from illusion to reality

- First idea: In the World's Fair of 1893 in New York, General Motors presented vision of "driverless cars".

- Three main stages of research:
 - 1980-2003 : University researchers developed AVs in two groups
 - Dumb vehicle, smart dedicated lanes →Vehicle relies on infrastructure
 - · Automated vehicles
 - From 2003 : DARPA Grand challenges boosted research
 - Recently private companies and vehicle industries have advanced AVs

SAE international's J3016

Level	Name	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)
0	No Automation	Human driver	Human driver	Human driver	Some driving modes

 Examples (Series production): Lane Departure Warning, Forward Collision Warning, Blindspot Detection, Lane Change Decision Aid, Parking Sensors, Adaptive Front-lighting

Level	Name	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)
1	Driver Assistance	Human driver and system	Human driver	Human driver	Some driving modes

• Examples (Series production): Adaptive Cruise Control, Parking Assist (only lateral control)

Level	Name	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)
2	Partial Automation	System	Human driver	Human driver	Some driving modes

• Examples (Series production): Traffic Jam Assistant, Parking Assist (longitudinal and lateral control), Tesla Autopilot

Level	Name	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)
3	Conditional Automation	System	System	Human driver	Some driving modes

• Examples (Research & Development): Highway Chauffeur, Platooning

Level	Name	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)
4	High Automation	System	System	System	Some driving modes

- Examples (Series): People Mover (on constructional separated lanes), Automated transport of goods on factory premises
- Examples (Research & Development): Google car, People Mover (on public roads), Automated Valet Parking, various research projects

Level	Name	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)
5	Full Automation	System	System	System	All driving modes

- A vehicle with an automated driving system that, once programmed with a destination, is capable of fully performing the dynamic driving task throughout complete trips on public roadways, regardless of the starting and end points or intervening road, traffic, and weather conditions.
- Degree of maturity: Research
- Currently no systems available, which are capable of this.

Cooperative lane changing with V2V communication

Highly-automated valet-parking

Outlook

<u>Managing Automated Vehicles Enhances Network (MAVEN)</u>

State of the art in autonomous driving

German Aerospace Center *DLR* Institute of transportation systems

Smart Cities Symposium Prague 2017 Dr.-Ing. Reza Dariani

Knowledge for Tomorrow