

(Managing Automated Vehicles Enhances Network)

Automated driving in an urban environment

Robbin Blokpoel

Dynniq, the Netherlands

CAR 2 CAR Forum 2017 28.11.2017 Braunschweig, Germany

Commission

General Information

Website

✓<u>www.maven-its.eu</u>

- Duration
 - 36 months (Sept '16 Aug '19)
- Funding
 - ✓ ~3M€ under EC H2020 programme
- Partners:
 - ✓ From five countries: DE, NL, CZ, BE, UK

dφnnıq

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

Project summary

- □ MAVEN will develop management regimes for highly automated driving in urban areas.
- Road infrastructure will be able to monitor, support and orchestrate vehicle and VRU movements to guide vehicles at signalized intersections and corridors in urban areas.

Main objectives

MAVEN

000

- Increase safety with collective perception
- Increase efficiency by exploiting possibilities of automated driving

MAVEN I2V signal negotiation

Vehicle information (1)

Vehicle and/or platoon transmits expected route, desired speed, platoon size, etc.

RSU / TLC re-optimize control strategy (2)

- Based on received information there can be a new optimum,
- update SPATEM with new signal timing and speed advice and lane information

Vehicle feedback(3)

000

MAVEN

- Vehicle and/or platoon communicates if suggestion can be executed
- TLC can take this into account by not making signal timing changes anymore

European

Commission

MAVEN platooning

Mix between distributed and centralized approach

- Based on common distributed algorithm and V2V exchanged info, individual vehicles form platoons and manage their operation (joining, leaving, etc.) (1)
- Yet, platoon leader has the central role of communicating platoon properties to the infra (2)
- Use of 2 parallel radio channels
 - One for advertising vehicle and/or platoon characteristics to other vehicle or infra
 - The other, to transport platoon control and management info

Commission

Inclusion of conventional traffic and VRUs

- Use of cooperative sensing for improved detection and reaction
 - Both vehicles and infra can detect and share info about non-cooperative road users
 - Improved awareness used to adapt vehicle trajectory for ensuring increased safety
- Managemement of emergency situations

MAVEN

000

Vehicles in platoon keep monitoring the environment and controlling the system all the time

to possibly undertake emergency (automated) reactions

Extension of standard message sets

Message sets defined for V2X communication

- Collective Perception Message (CPM)
- ✓ Lane Advice Message (LAM)
- Extensions to Cooperative Awareness Message (CAM)

Standardization

- Alignment with Car2Car Consortium about CPM
- Results are brought into ETSI for standardization

... do not hesitate to contact us for:

- Share ASN.1 definitions
- Design details
- Etc.

Commission

Simulation Architecture for automated vehicles

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

European

Commission

Simulation Architecture for automated vehicles

Open Local Dynamic Map (LDM) interface

- Regular SPaT and CAM data
- Lane level accurate vehicle positions (extended CAM or sensor)
- Extended vehicle status: speed advice, platoon status, following distance, intended route
- Queue information

True cooperative simulation

- Information from vehicles is processed in traffic light controller
- Vehicles follow speed advice in simulation
- Chance for impact assessment at high penetration rates

Enhanced queue modelling

Queue length vital for GLOSA

✓ Arrive at the stop line when queue is discharged instead of light turning green

Improved traffic light performance

Better information allows optimizer to get closer to true optimum

Various information sources

- Vehicle destination information
- Following distance
- Infrastructure sensor counts
- ✓ Infrastructure sensor occupancy

European

Commission

Plan stabilization for adaptive control

- Plan stabilization with flexibility required for MAVEN use cases
 - ✓ Unstable plan leads to unnecessary acceleration/deceleration
 - Drivers will loose trust in system with instability
- Cost function designed for adaptive control
 - Exploits possibility to fixate the start of only one signal group
 - Cost function parameter allows applying policy preferences of road operator rather than a magic number of x seconds
- Patent granted for plan stabilization solution

Commission

Plan stabilization for adaptive control

Plan stabilization with flexibility required for MAVEN use cases

- Unstable plan leads to unnecessary acceleration/deceleration
- Drivers will loose trust in system with instability
- Cost function designed for adaptive control
 - Exploits possibility to fixate the start of only one signal group
 - Cost function parameter allows applying policy preferences of road operator rather than a magic number of x seconds
- Patent granted for plan stabilization solution

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

European

Commission

Plan stabilization evaluation

- Log prediction and compare to actual switch
- Mean Square Error (MSE)
 - Bias towards errors at high Time To Green (TTG)
- Mean Relative Error (MRE)
 - Divides absolute error by remaining TTG
 - ✓ Good measure for speed advice performance
- Perceived Change (PC)
 - New measure to estimate drivers perception
 - Indicator for frequent acceleration/deceleration

$$pc = \frac{\sum_{t=1}^{T} \frac{\alpha \, TTG_{t-1} - TTG_t}{min(TTG_{t-1}, TTG_t)} 100\% \Big/_{\sum_{t=1}^{T} \alpha}$$

Infrastructure Improvements: Results of plan stabilization

Best of both worlds: flexible and stable

- Tested on single intersection with 1 stabilized signal group
- More stable and better traffic efficiency compared to current state-of-the-art
- Policy setting changes behaviour

Scenario	Impact(s)	Delay(s)	Stops	GLOSA(%)	MSE(s ²)	MRE(%)	PC(%)
Static	43.2	36.7	0.81	25	0	0	0
Actuated	36.3	29.6	0.84	19	182	84.67	7.62
Adaptive	32.7	27.0	0.72	46	47	26.38	5.65
Semi-fixed	37.4	31.0	0.80	27	62	41.89	3.82
Stabilized	32.7	27.0	0.71	53	17	15.01	3.52
Stabilized x5	35.6	29.7	0.73	51	22	7.95	2.66

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

Pilot site Helmond

Large test site with 20+ 802.11p RSUs installed

- One intersection approach with TraffiRadar car-following detection
- ✓ Adaptive traffic control to introduce autonomous vehicles into the policy framework

Hyundai vehicle

- Based on series produced loniq
- Sensor setup: mono-camera, front+corner radars, front+rear LiDAR, 802.11p V2X
- MAVEN-compatible AD architecture: data fusion, vehicle control and path planning

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

Pilot site Braunschweig

Application Platform for Intelligent Mobility (AIM) test site

- Stereo video detection with radar and hemispherical dome camera's
- Tostmannplatz intersection has 4 controlled approaches
- ✓ Vehicle actuated control
- RSU and parallel SUMO model for vehicle position modelling
- HYU and DLR test vehicles

000

Two DLR vehicles

MAVEN

- eGolf and Passat GTE
- Sensor setup: mono-camera, 6x radars, 4x LiDAR, 802.11p V2X, DGPS, Ultrasonic
- MAVEN-compatible AD architecture: data fusion, vehicle control and path planning

~100m

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

125m

Test planning

Simulation

- Prague, Greenwich, Helmond, Braunschweig
- ✓ SUMO: Impact assessment, large-scale applications
- DOMINION: Controlled environment, detailed analysis
- Closed test sites (Grießheim, Edemissen Air Field, DLR closed track)
 - Mobile RSU & TLC
 - Initial platooning tests up to 3 vehicles
 - Lane advice and collective perception
 - ✓ Activities from February 2018 to September 2018
- Open road tests
 - Installation of hardware up to December 2017
 - Activities from August 2018 to February 2019

MAVEN is funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727

Thank you!

Commission

