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Executive summary 

This deliverable is the textual description of the cooperative manoeuvre and trajectory planning 
algorithm which have been designed and implemented by DLR and HMETC for MAVEN. 
An overview of different modules of vehicle automation is given. The trajectory planning and 
tactical and strategical modules and their roles on cooperation are explained. Furthermore, 
cooperation with infrastructure in the form of AGLOSA and lane change and cooperation with other 
automated vehicle in the form of platooning is described. Functionality of the algorithms is 
approved by simulation results, close field tests and urban tests in close relation to WP4, WP6 and 
WP7.  
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1 Introduction 
 
This document contains a detailed description of the cooperative manoeuvre and trajectory 
planning algorithm implemented in MAVEN’s WP3. To validate the functionality of the implemented 
algorithms, simulation results, test field results, as well as, urban area results are presented in this 
document.  
This document consists of the following chapters: 
Chapter 2 deals with vehicle automation and describes the developed and implemented vehicle 
automation sub-modules. 
Chapter 0 is about manoeuvre and trajectory planning. It describes the approach and the 
implementation of the trajectory planner and the tactical and strategical modules, as well as their 
role in cooperation. 
Chapter 4 concludes this deliverable. 
As HMETC and DLR use a different vehicle architecture, different sensors and a different software 
framework, the concepts design and implementation for DLR and HMETC are done mostly 
separated. Therefore, the specific implementations of both are described in different sections. 
Nevertheless, cooperation of both is possible as both developments are bound to a common 
communication protocol and common message definitions. On top, the Platoon Logic part 
developed by DLR is used in the HMETC car as well, assuring correct platooning behaviour, as 
described in D3.1 [1]. 
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2 Vehicle automation 
 

In MAVEN deliverable D3.1 [1] vehicle architecture on module level has been described for DLR 
and HMETC. All MAVEN automated vehicles follow a common basic software architecture (“AD 
software”), composed of interfaces to the sensors and to a high definition map, a sensor data 
fusion, and modules for trajectory planning and vehicle control, as shown in Figure 1. In addition, a 
common module “Platoon Logic” developed by DLR, which is handling all platoon related 
procedures and information, e.g. the process of platoon forming and of platoon breaking in case 
other vehicles need to change lane to the lane of the platoon, is attached to the AD software. While 
the AD software differs in implementation between DLR and Hyundai vehicles, the Platoon Logic 
has been implemented as a common library for both. 
 
 

 
Figure 1: General vehicle automation architecture 

 
2.1 DLR 

DLR vehicle automation architecture is illustrated in Figure 2. As it is shown, it has three modules, 
tactical decision, trajectory planner and vehicle control.  
 

 Tactical decision: In an optimal control based approach, the characteristic of a planned 
trajectory is an objective function. On another hand, defining a generic objective function 
which satisfies all driving situations and conditions is not feasible. Therefore, based on the 
forehead situation such as road geometry, obstacle information etc., driving strategy can be 
defined. Based on the defined strategy, an Optimal Control Problem OCP can be 
reformulated. As an example, maximum velocity is an important parameter which can be 
taken from the road from traffic signs or can be defined based on the driving area (Urban, 
Highway). But traffic network dynamics can also impact the driving speed. Therefore, a safe 
and feasible speed based on the current situation must be defined. Further consideration is 
not limited only to driving velocity but to reformulation of OCP such as the dynamic 
definition of the feasible region in OCP. Other examples are a far traffic light showing a red 
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phase which is not inside optimization horizon, or an advised velocity from the AGLOSA 
system, or any action needed for the platooning scenario, e.g. braking or accelerating 
vehicles and desired gaps.  

 

 
Figure 2: DLR vehicle automation 

 
 Trajectory Planner:  

o OCP, ODE and SQP solver: As already mentioned [1], an optimal control based 
approach is used to plan a trajectory. A Sequential Quadratic Programing SQP 
method solves the optimization problem as minimizing an objective function � under 
nonlinear equality and inequality constraints as 
 
 
 min�(�)   

� ∈ ℛ�: ��(�) = 0 � = 1,… ,�� 1 

 ��(�) ≥ 0 � = �� + 1,… ,�  

 �� ≤ � ≤ ��   

    

�(�) is the objective function with the vector � , and function ��(�) represents the 

equalities and inequalities and �� and �� represent lower and upper boundaries 
respectively. The above description of an optimal control problem can be written in 
the following form. Reformulation is described in detail in [2] and [3]. 
 
 ���

��,��
�(��(��), ��(��))  2 
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with dynamic system and nonlinear constraints as 
 �̇ = �(�, �)  3 

 �� ≤ �(�, �) ≤ ��  4 

as well as states and input restrictions as 
 
 �� ≤ � ≤ ��  5 

 �� ≤ � ≤ ��  6 

 
� refers to the objective function, �	and � refer to states and inputs respectively, � to 

nonlinear constraints and index � and � to lower and upper value respectively. In 
equation 2, the Meyer term, considers states and inputs at final time ��. To deal with 

the objective function which considers the complete optimization horizon, the 
objective function of equation 2, can be written as equation 7 in which the integral 
part, also called Lagrange term, is defined as an extra state inside the Ordinary 
Differential Equation (ODE) of the dynamic system.  
 

���, �� = 	� �������, ������� + � ��	(�(�), �(�))��
��

��

 
 7 

 
o Numerical integrator: To solve the ordinary differential equation of the optimal 

control problem, an explicit Runge-Kutta method is used. Figure 3 illustrates a 
planning horizon � with equidistance time horizon	∆�. At each iteration, after 
planning a trajectory for a given time horizon �, a portion of it, �, is sent to the 
vehicle controller. Then the OCP, based on the new sensor information, is updated 
and planning process is repeated for the new time horizon.  

 
Figure 3: Moving-horizon approach 

o Initial solution planner: As the optimization method used in the solver belongs to the 
class of quasi-newton methods, it requires a starting point or initial solution. This 
sub-module is explained in more detail in the next chapter. 
 

 Vehicle control: The vehicle model used inside the trajectory planner is simplified (vehicle 
ODE) and it cannot reflect the complete behaviour of the real vehicle. On the other hand it 
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is not possible to consider all external disturbances and effects inside the trajectory planner 
due to their complexity and calculation time expenses. Hence, the driven trajectory after 
applying the actuator values, found by the trajectory planner, does not match the planned 
trajectory. Therefore, a closed loop controller is used to minimize the error and difference 
between calculated trajectory and the driven one.  
 

2.2 HMETC  

Hyundai’s test vehicle framework running the MAVEN functions is based on the commonly used 
ROS (short for Robot Operating System), which is taking care of the communication between 
several so called nodes (sending and/or receiving endpoints/control units/functions), scheduling 
and maintenance tasks. On top of this base framework, control logic and specific MAVEN functions 
are integrated to fulfil the required MAVEN use cases like manoeuvring control upon road 
infrastructure advisories, handling of collective perception information or platooning. 
As described in Deliverable D3.2 [4] and highlighted in Figure 4 and Figure 5 the sensor fusion 
module collects inputs from the individual sensors (including the V2X communication module) and 
provides a consolidated representation of the environment to the Guidance, Navigation and Control 
module (GNC).   
The GNC module is devoted to compute the planned trajectory and derive motion objectives to be 
converted into vehicle control signals. In this block, the Decision Making Module (DMM) can 
support a threat assessment based on the vehicle route and the obstacles detected in the drivable 
region. As such, it is used to drive deceleration/stopping, as well as lane change decisions. For this 
purpose, the decision making module takes as inputs the list of detected and tracked objects as 
well as the list of lanes information from the sensor fusion module. This information is crossed with 
the ego vehicle state (heading, speed, position, etc.) from the Vehicle State Estimator (VSE) and 
with the intended route as received from the global route planner module. Moreover, the DMM can 
receive triggers to adapt the vehicle speed or change the lane based on V2X receptions from the 
infrastructure and has to also consider the presence of traffic signs, speed limits, etc. from HAD 
maps. Based on all these inputs, the DMM generates two outputs: a so called “feasible 
manoeuvre” and an “object threat list”. A feasible manoeuvre such as lane change, go straight, 
stop, keep distance and possible  associated speed and or distance values are computed based 
on the priority of the various inputs like intended route, object list, C2X speed and lane change 
advice, traffic signs from HAD map data, etc. 
 

 
Figure 4: HMETC AD_SW building blocks (Perception and Guidance, Navigation and Control) 
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The object threat list is a set of objects whose position and dynamics currently constitute a threat 
(e.g. risk of collision) when compared with position and dynamics of the ego vehicle.  Feasible 
manoeuvre and object threat list are given as inputs to the path and motion planner module. Based 
on them, the path planner module continuously computes a reference goal point and, by exploring 
all the possible paths to reach it, selects the most suitable one consisting of a set of intermediate 
waypoints. Finally, the motion planning module takes the waypoints as input and translates them 
into an objective position, speed and heading. The output of this motion planning is the input for 
the vehicle automation function (actuator control) enabling the vehicle to reach the target in a safe 
a comfortable way.  
The platooning logic is also interfaced with the path planner and sensor fusion module in order to 
collect information needed to be exchanged via V2X with other cooperative automated vehicles, 
and accordingly enable the calculations of the platooning state machine. 
 
 

 
Figure 5: HMETC data processing approach “sense, act & control” 
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3 Manoeuvre and trajectory planner 
In this chapter the manoeuvre and trajectory planner and its cooperation with other cooperative 
vehicles and infrastructure is explained. 
 
3.1 DLR 

As mentioned in the previous chapter, an optimal control based approach is used to plan a 
trajectory in DLR vehicles. The optimization method used in the solver belongs to the class of 
quasi-newton methods, hence requires an initial solution. While 3.1.1 describes the initial solution 
planner, 3.1.2 explains the trajectory optimization. Finally, 3.1.3 gives an overview on the Tactical 
decision and cooperation of the vehicle automation. 
 

 Initial solution planner 3.1.1
 

In order to generate an initial solution, a path from current position to destination is needed. There 
are different methods such as Rapidly-exploring Random Trees RRTs [5] or Probabilistic Roadmap 
PRM which are efficient methods to find a path in unconstructed environment. But to plan a path in 
a structured environment, based on high precision digital map, a set of discrete points ���, ��� from 

road center line, as shortest path, can be used instead of using graphs [3].  
A simple kinematic vehicle model, as shown in Figure 6, is used to convert these discrete points to 
the initial solution, here steering angle and driving force. 

����� = [�����, ������]
� 8 

 
  

 
Figure 6: Simple vehicle kinematic model 
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 Trajectory optimization 3.1.2
 
 Vehicle model 3.1.2.1

To describe the vehicle’s motion, a single track bicycle model is used, as shown in Figure 7, in 
which steering angle and driving force are input of the system, see equation 9. The vehicle is 
regarded as a rigid body moving in ��-plane. To simplify the model, front and rear wheels are 
summarized to one single wheel each and roll and pitch angels as well as tire characteristic are 
neglected. The system states, shown in equation 10, are coordinated at the centre of gravity � and 
� in a vehicle global coordinate system. The yaw angle � describes vehicle orientation. � is the 
vehicle velocity and � the vehicle side slip angle. � is the travelled distance as integral of velocity. 
This parameter is used to read the relevant data from digital map based on the current vehicle 
position. 
 

� = [�, ��]
� 9 

� = [�, �, �, �, �]� 10 

 
 
Equation 11 is set of equations of motion of a single track model used in Ordinary Differential 
Equation ODE of trajectory optimization. 
 

 
Figure 7: Vehicle single track model 
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�̇ = �. cos(� − �)  

�̇ = �. sin(� − �) 	  

�̇ =
�. cos(�) tan(�)

�� + ��
 

11 

�̇ =
1

�
(�� − ��) 

 

�̇ = �  

 Objective function definition 3.1.2.2

As equation 5 and 6 show, inequalities and equalities can be considered inside the optimal control 
problem. This form of consideration has the advantage of being checked at each iteration, in order 
to find the control values which satisfy the inequalities and equalities. On another hand the 
considered parameters must be exact at each iteration. As the equations show, the validity is only 
guaranteed, when the inequalities and equalities are satisfied, otherwise the solution is invalid and 
a new solution must be found. This kind of definition is called “hard constraints”. Another way to 
define equalities and inequalities is to define them as penalty function inside the objective function. 
Advantage is that the optimal solution of the objective function also satisfies the inequality and 
equalities. Another advantage is that the border of validity-invalidity is not sharp as hard constraints 
and a smooth margin (two times differentiable) can be defined. Figure 8 illustrates hard constraints 
and soft constraints. Driving at the centre line of the road, not exceeding the road boundaries, 
driving with a desired velocity etc. can be formulated in the form of a penalty function as soft 
constraints in the Lagrange term. 
 
Equation 12 describes the road boundaries penalty function which has two parts. The first part is a 
penalty function which results in driving at the centre line and the second part keeps the vehicle 
within the road boundaries. � is the lateral distance between vehicle and lane center line which is a 
function of the vehicle position and road centre line and ��� and ��� are road upper and lower 
boundaries respectively. ��� and ����� are weight coefficients. 

 
 
 

 
Figure 8: Hard constraints vs. soft constraints 
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�����, �� = ��� � ���, ��
�

����

��

+ ����� � � ����, ��, ���(�), ���(�)�
�����

��

 
12 

 

Equation 13 is the penalty function with results in driving with desired speed. Desired speed is 
calculated by the tactical decision module in each iteration. 

����, �� = �� � (� − ����)
�

����

��

 
13 

 

Equation 14 is the Meyer term of the objective function with is to maximize the travelled distance 
within a horizon. This term is added to avoid stand still behaviour, as stand still in some cases 
satisfies most of the objective function terms. 
 

����, �� = −����(�� + �) − �(��)� 14 

The objective function as explained in equation 7 can be written as the sum of the Lagrange and 
Meyer terms explained above. 

� �������, ������� = ����, �� + ����, �� + �����, �� 
15 

 
 

 Tactical decision and cooperation 3.1.3
 

Infrastructure plays a crucial rule in MAVEN. It orchestrates the traffic network especially at 
intersections by sending Lane Advice Messages (LAM) and AGLOSA messages to the automated 
vehicles. Therefore vehicle automation must react properly to the messages received from the 
infrastructure. On another hand an automated vehicle cooperates with other automated vehicles, 
specific in MAVEN are the platoon use cases [1]. This latter is done in the tactical decision module. 
Another important point to be mentioned, as Figure 3 illustrates, longer horizon, and more frequent 
OCP updates are required in complex scenarios but due to the complexity of the approach the 
choice of horizon and update frequency is limited [3]. But the strategical decision can be taken 
independent from the OCP horizon. Figure 9 as an example illustrates two situations: one is a 
pedestrian crossing the street and the second, a turn left situation but both out of the planning 
horizon. In both situations, tactical decisions by using data from sensor-data fusion and digital 
map/navigation can reformulate the OCP by suggesting a safe velocity. 
 

 Lane change 3.1.3.1

As already mentioned, lane changes can be triggered from the infrastructure by sending a Lane 
Advice Message. In processing this, the tactical decision module is analysing possible gaps by 
using information about the objects on the requested lane. Based on the speed, distance and time 
headway of the following and preceding vehicle of each gap, a cost value is assigned to a gap. 
Then the gap with minimum cost is selected and lane change request is sent to OCP. Due to its 
dynamics the gap selection and its independency to ego planning, is not a convex problem, 
therefore the best gap selection is done not only by gap cost, but also by gap consistency. Figure 
10 illustrates ego vehicle and different gaps on the left lane. 
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Figure 9: Two example of tactical decision use cases 

 
 
Figure 11 illustrates the different simulation frames of a lane changing scenario. (I) is the starting 
point which shows ego at right lane and three other vehicles at left lane. At (II) a lane change 
request is received from infrastructure and tactical decision starts the gap analysis, Figure 10. 
Based on the above mentioned criteria, a cost is assigned to each gap and the second gap is 
selected as a suitable one. At (III) the lane change manoeuvre is started and at (IV) the ego is 
driving on the left lane. 
 

 AGLOSA 3.1.3.2

The vehicle automation via V2I communication, may receive AGLOSA messages at intersections. 
In these messages several dynamic zones and a velocities assigned to each of these zones are 
defined. Figure 12 left illustrates the dynamic zones, with different green colors from dark to bright, 
at Braunschweig Tostmannplatz. Same figure on the right illustrates a testing scenario with a 
mobile traffic light which sends AGLOSA messages to the FASCarE vehicle at the DLR grounds. 
 
 
 
 

 
Figure 10: Gap analysis 

 
 
 

ego

Gap 1 Gap 2
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Figure 11: Simulation frames of lane changing 

The tactical decision module finds out at which dynamic zone the vehicle is driving and sends the 
velocity of that zone as desired velocity ���� to OCP in each iteration.  
Figure 13 illustrates the vehicle driven velocity for an AGLOSA test at DLR. In the figure, at (1) the 
vehicle accelerates to reach the maximum permitted velocity which is also defined as desired 
velocity. At (2) the vehicle receives an AGLOSA messages and reduces its velocity in order to 
drive with the velocity assigned to the current zone. At (3) the vehicle is in another zone, hence 
another velocity is considered as desired velocity. At (4) the vehicle arrives at the intersection that 
has green phase, it crosses the intersection and accelerates to maximum permitted velocity. At (5) 
the vehicle decelerates as it is approaching the end of the test track. Red in the figure is the 
velocity sent to the vehicle controller and blue is the driven velocity.   
 

  

 
Figure 12: Left: dynamic AGLOSA zones at Tostmannplatz. Right: FASCarE following Hyundai Ioniq at the same 

place 

Other speeds calculated by tactical decision at each iteration are: 
 

 Front man speed: time headway based collision free speed calculated at each iteration to 
keep safe distance with front man.  

 Lateral comfort: Driving with unsuitable velocity in curve results in high lateral acceleration 
or discomfort for vehicle passenger. This parameter can be considered as penalty function 
inside the objective function, in the form of minimizing lateral acceleration or jerk, but for 
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simplicity, can be also calculated based on the road curvature and maximal accepted 
lateral acceleration, here 2	�

��� . 

 Merging speed: In order to change the lane smoothly, vehicle speed must be adapted 
based on the gap’s following vehicle. 

 Platoon speed: a desirable speed in order to drive, close and break a platoon must be 
calculated which is explained in next section. 

 

 
Figure 13: AGLOSA test velocity profile 

 
 Platooning 3.1.3.3

MAVEN automated vehicles are able to build and drive in platoons. The platoon logic is designed 
and developed as a unique module used in DLR and HMETC vehicles. The logic is explained in 
detail in D3.1 [1].  
The top right of Figure 14 illustrates the four platoon state machines. At tactical decision based on 
the vehicle capabilities and vehicle destination, set the platoon logic inputs, see D3.1 [1]. The 
vehicle automation receives trajectory information of the leader and based on this information 
plans a manoeuvre such as lane change and receives the state of the distance state machine, 
such as close distance, normal distance and gap distance. 
 
In normal distance state, the vehicle is driving normally and keeps a safe distance to the front man. 
In case of the close distance state a velocity profile to keep a desired time-headway with leader is 
generated. Close gap desired time headway is 1.5 [s] in an urban scenario, limited by the 
maximum braking capability of the FASCarE test vehicle of 3	�

��� . In close test field and 

simulation smaller values can be used. For gap distance the same approach is used, but in this 
case 3.0[s] as desired time headway is used.  Figure 15 illustrates time headway-velocity profile for 
platooning. 
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Figure 14: Simulation frames of platoon building 

 
Figure 14 illustrates the simulation frames of building a platoon. At 1 the vehicle drives normally 
and is communicating its desire to form a platoon. The front man is also an automated cooperative 
vehicle communicating its desire to form a platoon. At 2, as all the criteria to build a platoon 
between two vehicles are matched, the states change to in platoon. Therefore the follower 
accelerates to reduce the gap. At 3 the follower is closing the gap and at 4 both vehicles are 
driving in platoon.  
 
 

 
Figure 15: Platooning time headway-velocity profile 
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3.2 HMETC 

 Cooperative decision making 3.2.1
 
This section provides the general description and high level information related to the functionality 
of the DMM module used in HMETC AD software.  
Autonomous vehicles are intended to drive in a dynamic environment and expected to react 
scrupulously with high level of intelligence. In an autonomous vehicle, the real-time information 
about the surroundings is provided by exteroceptive sensors (like RADAR, LiDAR, camera, etc.) 
and the information about the vehicle state is provided by the proprioceptive sensors (like GPS, 
IMU, etc.). The information about the environment around the autonomous vehicle is represented 
in terms of World Model Events. In the AD software, at the beginning of a journey the global route 
planner (GRP) provides the way points for the optimal route. In real-time, it is crucial to decide the 
most appropriate driving manoeuvre along this route depending on the sensor and HD map 
information. Road safety is considered as the prime factor while deciding a manoeuvre. In this 
context, the Decision Making Module (DMM) continuously processes the world model events and 
the driving directions to decide the feasible manoeuvre. Based on the environment (like highway, 
city, etc.) the manoeuvres are decided using a rule-based state machine. The manoeuvre decision 
is then utilized by the GNC modules of the AD software. 
 
The DMM currently supports the following manoeuvres: 
 

 Lane keep – the ego-AV drives in the lane by maintaining lane centre 
 Distance keep – In the presence of a slower-moving obstacle at the same lane as the 

ego-AV, and when changing the lane is not possible, the ego- AV follows the obstacle 
by maintaining a safe distance 

 Stop and Go – In the presence of a static obstacle in the same lane as the AV, and 
when changing the lane is not possible, the ego-AV decelerates and stops at a safe 
distance. Similarly, the ego-AV decelerates and stops when V2X messages from a 
cooperative traffic light indicate that the current phase is red and the ego-vehicle is 
reaching the stop line. 

 Left Lane Change - In the presence of a slower-moving or static obstacle in the same 
lane as the ego-AV, or when a V2X LAM advice is received from the cooperative 
infrastructure, the ego-AV executes a lane change manoeuvre to the left lane 

 Right Lane Change - In the presence of a slower-moving or static obstacle in the 
same lane as the ego-AV, or when a V2X LAM advice is received from the cooperative 
infrastructure, the ego-AV executes a lane change manoeuvre to the left lane 

 Destination – When the ego-AV approaches the destination it decelerates and stops 
 

The operations performed by the DMM to alternate among the different possible states are 
described in the following by making reference to the following figure: 
 

 Data Extraction - The Decision Making Module requires various information about the 
environment. Relevant aspects about the lanes, road, obstacle and route need to be 
extracted from the large information available. Additionally, the information from V2X 
messages received from other cars of the Infrastructure or car can also be extracted. 
For example, information related to lane marking type, driving direction of the 
road etc. will be extracted from Road Network (HD map) information. 
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Figure 16: schematic representation of the operations performed by the DMM 

 
Figure 17: DMM WM events classification 

 
 World Model Event Generation - The environmental data extracted from the Data 

extraction component, is processed and represented as World Model Events (WME) 
by the World Model Event generation component. For example, based on the lane 
marking type (DASHED, SOLID etc.), the “Lane-related” World Model Event "Lane 
Boundary Crossable" will be SET or RESET. Multiple WM events are continuously 
generated based on the classification given in the Figure 17. 

 

 
 Rule Based Decision Making - The transition from one state to the other will be 

controlled by the transition conditions. Transition conditions are rules implemented by 
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using different combinations of the world model events. The decision making process 
is continuously performed and instantaneous in nature. Depending on the occurrence 
of world model events, transitions will happen from one state to another state. One of 
the states will be the finally decided manoeuvre as output of the state machine. A 
pictorial representation of the rule-based decision making is as shown below: 

 

 
Figure 18: DMM Rule-based decision making 

 
Figure 19: DMM state diagram 

 
The state diagram regulating the transitions among the DMM states is represented in the Figure 
19.  
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The transitions conditions adopted by the state machine are as follow: 
 

T1: LANE KEEP TO DISTANCE KEEP: 
1. In case there is an obstacle moving at lower speed than the ego vehicle in the same 
lane. In this case, a lane change is not feasible and the obstacle kept within a distance 
keep threshold distance that depends on the ego-vehicle speed. 
 
T2: DISTANCE KEEP TO LANE KEEP: 
1. When the obstacle in the ego vehicle lane is moving at a higher speed than the ego 
vehicle. 
2. When the obstacle in the ego lane is moving at a lower speed, but it is beyond the 
distance keep threshold distance. 
3. When there is no obstacle in the current lane. 
 
T3: DISTANCE KEEP TO STOP AND GO: 
1. When the slower obstacle in front stops in the ego lane before a traffic light–
signalized stop line. 
2. When slower obstacle in front in the ego lane crosses a traffic light–signalized stop 
line and the current traffic light signal (received via V2X) is RED. 
3. When the ego-vehicle is approaching a traffic light–signalized stop line and the 
current traffic light signal (received via V2X) is RED. 
 
T4: STOP AND GO TO DISTANCE KEEP: 
1. In case there is a slower-moving obstacle in the ego lane and traffic light signal 
status (received via V2X) turns GREEN. 
 
T5: LANE KEEP TO STOP AND GO: 
1. When the obstacle in front in the ego lane is static and lane change is not feasible. 
2. When the ego vehicle is approaching an intersection and the traffic light signal 
status (received via V2X) is RED. 
 
T6: STOP AND GO TO LANE KEEP: 
1. When there is no obstacle in front in the ego lane. 
2. When the front obstacle in the ego lane moves at speed higher than the ego vehicle 
speed. 
3. When the traffic light signal status (received via V2X) turns GREEN. 
 
T7: LANE KEEP TO DESTINATION: 
1. When the ego vehicle approaches the destination and the distance between ego 
vehicle and the destination point is less than a threshold distance.  
 
T8: DISTANCE KEEP TO DESTINATION: 
1. When the ego vehicle approaches the destination and the distance between ego 
vehicle and the destination point is less than a threshold distance . 
 
T9: DESTINATION TO DISTANCE KEEP: 
1. When the destination point is after a slower-moving obstacle in the same lane as the 
ego-vehicle. 
 
T10: STOP AND GO TO DESTINATION: 
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1. When the ego vehicle approaches the destination and the distance between ego 
vehicle and the destination point is less than a threshold distance. 
 
T11: DESTINATION TO STOP AND GO: 
1. When the destination point is after the static obstacle. 
 
T12: LANE KEEP TO LEFT LANE CHANGE: 
1. When there is a V2X request for LC from the infrastructure and a suitable gap 
distance is available between the ego-vehicle and the OLV, LV & FV, Figure 20. 
2. When there is a slow moving or static obstacle in the ego lane and a suitable gap 
distance is available between the ego-vehicle and the OLV, LV & FV, Figure 20. 
 
T13: DISTANCE KEEP TO LEFT LANE CHANGE: 
1. When there is a V2X request for LC from the infrastructure and a suitable gap 
distance is available between the ego-vehicle and the OLV, LV & FV, Figure 20. 
2. When there is a slow moving or static obstacle in the ego lane and a suitable gap 
distance is available between the ego-vehicle and the OLV, LV & FV, Figure 20. 
 
T14: STOP AND GO TO LEFT LANE CHANGE: 
1. When there is a V2X request for LC from the infrastructure and a suitable gap 
distance is available between the ego-vehicle and the OLV, LV & FV, Figure 20.  
2. When there is a static obstacle in the ego lane and a suitable gap distance is 
available between the ego-vehicle and the OLV, LV & FV, Figure 20. 
 
T15: LEFT LANE CHANGE TO LANE KEEP: 
1. When the lane change is completed. 
2. When the lane change is aborted due to environmental conditions (Ex: drastic 
reduction of LV velocity, Figure 20. 
 
T16: LANE KEEP TO RIGHT LANE CHANGE: 
1. When there is a V2X request for LC from the infrastructure and a suitable gap 
distance is available between the ego-vehicle and the OLV, LV & FV , Figure 20. 
2. When there is a slow moving or static obstacle in the ego lane and a suitable gap 
distance is available between the ego-vehicle and the OLV, LV & FV , Figure 20. 
 
T17: DISTANCE KEEP TO RIGHT LANE CHANGE: 
1. When there is a V2X request for LC from the infrastructure and a suitable gap 
distance is available between the ego-vehicle and the OLV, LV & FV, Figure 20. 
2. When there is a slow moving or static obstacle in the ego lane and a suitable gap 
distance is available between the ego-vehicle and the OLV, LV & FV, Figure 20.  
 
T18: STOP AND GO TO RIGHT LANE CHANGE: 
1. When there is a V2X request for LC from the infrastructure and a suitable gap 
distance is available between the ego-vehicle and the OLV, LV & FV, Figure 20. 
2. When there is a static obstacle in the ego lane and a suitable gap distance is 
available between the ego-vehicle and the OLV, LV & FV, Figure 20. 
 
T19: RIGHT LANE CHANGE TO LANE KEEP: 
1. When the lane change is completed. 
2. When the lane change is aborted due to environmental conditions (Ex: drastic 
reduction of LV velocity, Figure 20. 
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Figure 20: naming scheme for obstacle vehicles considered by DMM for lane change decisions 

  Cooperative aspect 3.2.2
 
In section 2.2 it has been highlighted that a dedicated V2X interface node is in charge, on the 
reception side, to extract data of received V2X messages from the V2X communication module. 
The interface node then distributes this data to the different AD_SW modules that reuse it. For the 
communication between the V2X communication unit and the V2X interface node, UDP sockets 
are used. When the V2X modules receives V2X messages from the infrastructure (GLOSA and 
LAM messages) UDP sockets are used to provide data structures to the GNC DMM module that 
reuse it (IF_1 in Figure 1). 
Important to mention that the HMETC AD framework includes an emulation approach used to 
emulate V2X transmissions and receptions in absence of other cooperative automated vehicles or 
infrastructure (see Figure 21). The AD_SW emulation module can be used to record data extracted 
from V2X messages received from real infrastructure (e.g. speed or lane change advices recorded 
at a given traffic light). These recordings are converted into ROS bag files and stored in the format 
as they would be received over the above mentioned UDP interfaces. The ROS bag files can be 
then “replayed” within the AD_SW logic of the ego-vehicle when performing simulations or road 
tests on the test track. This replaying of the bag file is emulating the receptions of V2X messages 
from the transmitting infrastructure (virtual cooperative stations in this case).  
 
 

 Cooperative planning in reaction to GLOSA and LAM advices 3.2.2.1

This section describes the functionalities performed by the GNC to process the V2X data relative to 
GLOSA and LAM advices. A complete and detailed description of the data structures passed as 
inputs to the GNC for this purpose is given in the deliverable D5.1 [6]. 
  
When GLOSA data is received by the GNC, the following operations are performed: 
 



MAVEN  Grant agreement no: 690727 
 

 
 
 

EC Horizon 2020 Research and Innovation Framework Programme   

 
 

28

 
 

 
Figure 21: HMETC AD framework including V2X emulation approach 

 
 

 The received GLOSA information provides speed advices applicable to particular 
combinations of ingressing and egressing lanes at the intersection. As the ego vehicle 
already knows the route it would be traversing on, the ingressing and egressing lanes 
relevant for the ego vehicle’s route are extracted from the HD map and considered for 
GLOSA adaptation. The same applies for the position of the stop line over the relevant 
ingressing lane, which identifies the position where the car needs to stop in case of 
red.  

 The distance of ego vehicle from its current position to that corresponding stop point in 
the relevant ingressing lane is continuously calculated. 

 The traffic light/infra provides speed advices for distinct distance-zones along each 
ingressing lane. As a consequence, the HD map lane ID associated to the V2X 
ingressing lane ID where the vehicle is currently driving is extracted. Then, the speed 
advices and signal phase corresponding to that particular lane are continuously read. 

 Using the currently calculated distance to stop line, the ego vehicle localizes into the 
distance-zones associated to the speed advices. The speed advisory corresponding to 
the zone where the vehicle is currently is sent out to the motion planner for speed 
adaptation. The speed adaptation request can be accepted only in case it is not 
conflicting to the objective of maintaining a safe distance to any obstacle in the ego-
lane. If a conflict is detected, the GLOSA speed adaptation is rejected. 
 

The above mentioned approach has been verified in simulation by running either a synthetic set of 
GLOSA speed advices (compliant in format to those transmitted in the Helmond and Braunschweig 
test sites), as well as recordings of real-road V2X GLOSA collected directly at Helmond and 
Braunschweig. The following figure shows the simulation outputs of the GLOSA adaptation, which 
verifies the functionality and prepares its implementation in the AD vehicle prototype.  
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Figure 22: simulation-based verification of GLOSA functionality 

On this basis, HMETC performed tests on the Griesheim test track using the HMETC automated 
vehicle stimulating the AD_SW planning and control modules to adapt the ego speed to the one 
dynamically suggested by the AGLOSA traffic light controller running at the Tostmannplatz 
signalized intersection. For this purpose, a preliminary task was the collection/recording of GLOSA 
information transmitted by the Tostmannplatz RSU. Figure 23 shows a picture of the Hyundai car 
during these recording sessions. 
 

 
Figure 23: Recording of GLOSA messages on the Tostmannplatz  

These recordings represent the real-world dynamic evolution of the traffic light phases and speed 
advices over a given time window and can be replayed by the AD_SW as an additional emulated 
input for the vehicle automation (see figure above).  
The speed adaptation of the automation system has been successfully verified on the Griesheim 
test track for different combinations of vehicle distances from the stop line and GLOSA recordings. 
Figure 24 shows one example of driving automated on the Griesheim track while replaying the 
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above mentioned GLOSA recordings collected at the Tostmannplatz. As we can see, the 
automated car’s speed adapts dynamically to the GLOSA speed while approaching the stop line 
(placed at approximately 850m driven distance). Please notice that the GLOSA speed equal to 
zero means that no speed advice is present in the recordings at that moment. By following the 
current value of the GLOSA, the vehicle drives at a lower speed than the maximum allowed (50 
kph) which allows crossing the stop line without stopping after the green phase has started. 

 

 
Figure 24: GLOSA adaptation verification on the AD vehicle reusing real-world GLOSA recording 

When LAM data is received by the GNC, the following operations are performed: 
 

 The received LAM information provides lane change advices applicable to particular 
target ingressing lanes at the intersection. As the ego vehicle already knows the route 
it would be traversing on, the ego and target ingressing lanes relevant for the ego 
vehicle’s route are extracted from the HD map and considered for lane change. The 
same applies for the position of the stop line over the relevant ingressing lane, which 
identifies the position where the car needs to stop in case of red (the GLOSA 
information about the current traffic light phase is continuously considered in the 
background for possible speed adaptation).  

 The distance of ego vehicle from its current position to that corresponding stop point in 
the relevant ingressing lane is continuously calculated. 

 The traffic light/infra provides lane change advices in form of target lanes to change to 
and the distance to the stop line where the LC should be initiated. As a consequence, 
the HD map lane ID associated to the V2X ingressing lane ID where the vehicle is 
currently driving is extracted. Then with the extracted ingressing lane ID, the lane 
change advice is read to identify the ID of the target lane. 

 Using the currently calculated distance to stop line, ego vehicle counts down from its 
current position to the target distance suggested for initiating the LAM advice. At the 
point of the target distance, a lane change request to the DMM is triggered. The 
request is accepted only if the transition conditions highlighted in Section  3.2.1 are 
met. In particular the execution of a V2X-triggered lane change request is subject to 
the availability of safe gaps with the surrounding vehicles. If such gaps are not 
available at the triggering moment, the DMM will try to execute the lane change at later 
instants till the vehicle will reach a threshold distance from the stop line. The DMM will 
continuously check the availability of safe gaps during this period and execute the LC 
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as soon as they are granted. If the threshold distance to the stop line is reached 
without getting safe gaps, the LC request is definitely aborted. 

 
Similarly to GLOSA, the above mentioned LC functionality has been verified in simulation as well 
as in emulation using the HMETC AD vehicle prototype.  In this case a synthetic LAM advice 
(compliant in format to those transmitted in the Helmond and Braunschweig test sites) is used. The 
following figure shows the simulation outputs of the LC adaptation (in combination with GLOSA), 
which verifies the functionality and prepares its implementation in the AD vehicle prototype.  
 
LAM emulation tests using the HMETC automated vehicle for LC execution on the Griesheim test 
track have also been successfully performed. In this case, the objective was stimulating the 
AD_SW DMM, planning and control modules to adapt to the LC advices in different conditions of 
surrounding traffic, with real cars opening and closing the safe gaps considered for LC execution 
decisions. The following figures show some pictures of the Hyundai car during these testing 
sessions. Videos of the performed tests have been also shown during consortium meetings. 
 
 

 
Figure 25: simulation-based verification of LC functionality 
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Figure 26: Test-track-based verification of LC functionality (1) 

 

 

 
Figure 27: test-track-based verification of LC functionality (2) 
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4 Conclusion 
 
In this deliverable the implementation and the results of cooperative manoeuvre and trajectory 
planning of DLR and HMETC has been explained. 
 
As mentioned in this document, DLR and HMETC approach differs. DLR trajectory planner is 
optimal control based and the planned trajectory is a function of objective function. Mathematic 
formulation of the optimal control problem has been explained. It has been explained that due the 
problem complexity, the optimization horizon is limited and therefore tactical decision is required to 
reformulate the optimal control problem. The role of tactical decision in cooperation with 
infrastructure, LAM and AGLOSA and other cooperative automated vehicle in platooning use 
cases has been explained. HMETC trajectory planner is rule based. Decision Making Module 
receives information about vehicle surrounding, infrastructure and other cooperative vehicles and 
generates a set of feasible manoeuvres and object threat list. Path and motion planner uses 
feasible manoeuvres and object threat list as inputs and select the most suitable manoeuvre. 
Selected manoeuvre satisfy safety aspects as well as cooperation.  
 
Despite the differences on the approach, DLR and HMETC automation architecture is similar in 
order to enable compatibility to perform MAVEN use cases.  
 
To validate the functionality of approaches and algorithms the results of simulation test, close field 
tests and urban tests of vehicle automation and its cooperation has been illustrated and presented. 
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