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Abstract—Transportation is one of the city’s processes to
achieve an efficient, livable and sustainable community aiming
to improve the citizens’ quality of life and the perception of
smartness of a city. Each of us experiences unnecessary delays
and expects improvement in mobility with the introduction of
new technologies, specially in traffic signal control due to its big
influence in urban traffic networks. One trend in modern vehicle
technologies is that Connected Vehicles (CV) will communicate to
the traffic infrastructure, so called V2I (Vehicle-to-Infrastructure),
which may enable cities to provide better services through
cooperation under limited infrastructure. Therefore, this paper
proposes and evaluates three algorithms for traffic control using
connected vehicles instead of stationary detectors: (i) a Dynamic
Maximum Gap (DMG) between arrivals at stop line (specific for
each vehicle), and (ii) the Throughput Adjusted Delay (TAD)
accounting the relation between intersection throughput and
delay, while (iii) the Throughput Adjusted Stopped Time (TAST)
uses stopped time (waiting time) for such relation instead of
delay. We demonstrate that our DMG algorithm at non-peak
flows, compared to traditional actuated control, reduces the travel
time up to 15%, waiting time (time spent with speed lower than
0.1 m/s) by almost 80%, and delay 50%. The TAD and TAST
strategies maintain good performance even at 10% penetration
rate of CV. Future research will contribute to the assessment of
the environmental and economical benefits of traffic signal control
using CVs, implementation on more realistic scenarios, as well
as exploration of other information from CVs and application of
advices sent from the infrastructure to vehicles.

Index Terms—connected vehicles, intelligent transport systems,
smart cities, traffic signal control, V2I

I. INTRODUCTION

A city can be viewed as a system composed of different
subsystems, those subsystems require high level of cooperation
between interdisciplinary fields to form an alliance system
with the main goal of improving citizens’ quality of life
[1] [2]. Such complex system can be decomposed into three
layers, according to [2]: (i) goals, representing efficient, livable
and sustainable community; (ii) city processes to achieve
such goals; and (iii) city resources. In respect to the city
processes, the application of advanced ICT (Information and
Communication Technology) to the city’s transport process,
for instance, should: (a) enhance mobility (decreasing travel
times); (b) promote accessibility (easiness for a citizen to
pursue its activity), and (c) increase safety (sharing pro-active
information to avoid dangerous situations); as long as (d)
promote sustainability of the city’s resources. The trend on
those particular subsystems utilizes all available knowledge
about the city to provide best services, through cooperation
under limited infrastructure using minimal resources [3].
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Within this context, the current development stage of mod-
ern vehicle technologies allows the possibility of vehicles
communicating with the road infrastructure, known as V2I
(Vehicle-to-Infrastructure). The potential of this Connected
Vehicle technology was analyzed in [4] for a real network
located in Toronto, Canada. The authors’ assessment resulted
in 37% reduction in travel time, lower emissions by 30%,
and improvement in safety indicators by 45%. The V2I com-
munication enable us to innovate the current traffic control
strategies: (i) fixed time, in which pre-programmed signal
plans are based on historical traffic data along the day;
(ii) traffic-actuated, where real-time traffic conditions either
change the length or order of signals phases; (iii) adaptive,
which also predicts near future traffic conditions in order to
optimize signal timing using an objective function. Although
traffic-actuated and adaptive strategies may be desired to
provide better usage of intersection capacity, they rely on
traffic detectors that only provide little information about all
vehicles passing a specific cross-section of the road, and they
usually cannot measure vehicle states (e.g position, heading,
speed). On the other hand, collecting CV (Connected Vehicle)
data is significantly cheaper than installing and maintaining
traffic detectors. Additionally, a communication failure by a
connected vehicle to infrastructure would only reduce the
penetration rate, what would lead to little impact to the overall
system performance [5].

Several studies have implemented CV technology to
tackle uncertain or rapid changing traffic volumes and make
"smarter" decisions. Their common principle is that the inter-
section infrastructure (e.g. traffic controller) gather vehicles’
state information, such as positions and speeds, to either
predict the time instant each vehicle will reach the stop line,
or use CV data to estimate queue length. Extension of this
principle varies on the estimation of non-connected vehicles
state (using microscopic models or statistical methods), and/or
the application of two-way communication for systems like
Green Light Optimal Speed Advisory (GLOSA), Local Level
Routing, and Priority Management and Negotiation, more
information can be found in [6].

The aim of this paper is to develop traffic signal control
strategies that use only V2I communication and knowledge of
the upstream traffic flow. We evaluate the performance of our
proposed strategies using the traffic simulator Simulation of
Urban Mobility (SUMO) [7], in which we model an isolated
intersection and compared it against a traditional actuated
strategy that uses one stationary detector on each approach
based on the green time extension principle. We measure
the results in terms of benefits on mobility (trip duration,
delay, waiting time) at peak and non-peak hours flow, while
other types of analysis are open for future research. The best
achievements (compared to an actuated control) are in non-



peak flows with reduction of the travel time up to 15%, waiting
time by almost 80%, and 50% for delay.

This paper is structured as it follows: section I briefly
reviews the state of the art in the field of traffic signal
control using connected vehicles, while section II describes our
proposed traffic control algorithms. In section III we present
our simulation model environment used for the evaluation of
our strategies and the traditional one, as well as the simulation
results and analysis of these results. Section IV includes
conclusions and possible future research.

II. PROPOSED STRATEGIES

Fig. 1 illustrates an example of how we define and divide the
real-world scenario, containing the events in which we need
to estimate the state of each vehicle (time instant, distance to
stop line and speed).

Fig. 1. Key events to estimate vehicle state

A. Trip Generation and Detection

At each time step, we use the information presented on Ta-
ble I for each vehicle i to be discharged in the communication
range. Such data is collected from Connected Vehicles (CV)
and estimated for non-Connected Vehicles (non-CV) using
standard values.

TABLE I
NEEDED DATA FOR THE PROPOSED TRAFFIC SIGNAL CONTROL

Vehicle Data Unit Notation
Vehicle Type dimensionless typei

Acceleration Capability m/s2 acci
Perceived Deceleration m/s2 deceli

Desired Speed m/s vdesi
Vehicle Length m leni

Position m (vehxi, vehyi)
Speed m/s vi

Approach int appi

For Penetration Rates (PR) lower than 100%, we gener-
ate Artificial Vehicles (AV) to simulate non-CV according
the defined PR and O-D (Origin-Destination) flow volumes.
Assuming Exponential Distribution of arrivals (due the setup
of an isolated intersection with random arrivals), we calculate
the headway x of the next AV as it follows from [8]:

x = µ(− lnR) (1)

where µ is the mean headway of CV and non-CV flow, and
R is a random number between 0 and 1. In order to add AV’s
as close as the real arrivals of all vehicles, we look into the
cumulative probability of the CV’s headways. The cumulative
probability is given by:

F (x;λ) = 1 − e−λx (2)

where λ = 1
µ that represents an average number of CV

and non-CV arriving during the time aggregation of the O-
D flow volume. The adjustment of the mean headway µ for
all vehicles on the same flow is:

µ∗ = µ+ µ

[
F (xmean;λ) − F (xlst_dct;λ)

F (xlst_dct;λ)

]
(3)

in which xmean is the CV’s mean headway and xlast_dct the
last detected headway. In fact we use µ∗ in Eq. 1 only when
the flow of CV’s for the O-D pair is higher than a min_cvph
to avoid sampling of sporadic CV arrivals. Additionally, for
every time step longer than the last detected headway lst_dct
the adjusted mean headway µ∗ gradually changes back to its
average value µ. To maintain the PR, we calculate the headway
of the next AV’s at each new generated AV, but only introduce
it if there was not a CV detected during the AV headway.

B. Estimation of Vehicle State

Following the principle that a leader vehicle will influence
the follower, we estimate the attributes for each key event on
Fig. 1 from the first vehicle in the order (by distance) on the
approach. While the distance to the stop line dist_stoplinei
of CV’s is estimated by Euclidean Distance, for AV’s we use
the Krauss Car-Following Model [9], which is based on the
safe speed vAVsafe of a vehicle i:

vAVsafe = vl +
gapl,f − vlT
vf+vl

2×deceli + T
(4)

where l represents the leader, f the follower and gapl,f the
gap (in distance) between them, moreover T is the reaction
time of drivers. The algorithm then update the speed vi and
distance to stop line dist_stoplinei of AV’s using Eqs. 5
and 6, respectively, and considering that st represents the time
step.

vAVi,st+1 = min
{
vdesi, v

AV
i,st + acci × st, vAVsafe

}
(5)

dist_stoplineAVi,st+1 = dist_stoplineAVi,st − vAVi,st+1 × st (6)

Assuming that vehicles want to stop at a minimum distance
gap (dist_gap in meters) from the vehicle ahead, they will
start slowing down at the distance threshold (dist_thres in



meters) from the target. Based on the simplified Gipps’model
presented in [10] we have:

dist_thresi = − v2i
2 × deceli

+ viT + dist_gap (7)

This gives us the distance of the key event (1) on Fig. 1:

evt1dist,f = event2dist,l + lenl + dist_thresf (8)

where the superscript represents the event number. We will
generically denote evtdist, evttime and evtspeed for the at-
tributes at any key events, while superscript e for event index.

We derive two different sets of equations from the funda-
mental equations of constant translational acceleration in a
straight line from Physics [11]. One set when vehicle i will
be accelerating between key events (Eqs. 9, 10 and 11):

evtespeed =
√

(evte−1
speed)

2 + 2 × acci × ∆deacc (9)

evtetime =
evtespeed − evte−1

speed

acci
+

∆deconst
evtespeed

(10)

evtedist = evte−1
dist − ∆deacc − ∆deconst (11)

where ∆d is the distance of the movement, computed using
the maximum possible elapsed times ∆t as follows:

∆teacc = min

{
vdesi − evte−1

speed

acci
, aval_acc_t

}
(12)

∆teconst = aval_acc_t−
evtespeed − evte−1

speed

acci
(13)

∆deacc = min

{
vdes2i − (evte−1

speed)
2

2 × acci
, evte−1

dist,

evte−1
speed × ∆teacc +

1

2
acci × (∆teacc)

2

} (14)

∆deconst = min
{
evte−1

dist − ∆deacc,∆t
e
const × vdesi

}
(15)

in which aval_acc_t is the available time for the accel-
eration. The other set is for deceleration, which we have
Eqs. 16, 17, and 18:

evtespeed = evte−1
speed + deceli × evtetime (16)

evtetime = min

{
aval_decel_t,−

evte−1
speed

deceli

}
(17)

evtedist = evte−1
dist −

(evtespeed)
2 − (evte−1

speed)
2

2 × deceli
(18)

where aval_decel_t is the available time for the deceleration.
From Eq. 9 to 18, the vehicle’s states are dependent on the

expected traffic signal timings. When vehicles need to yield to
an preferential traffic, we calculate the capacity of discharge
(saturation flow) of the approach that must yield capapp as-
suming exponential arrivals of the opposite preferential traffic,
otherwise we use standard values. Eq. 19 is the same of the

capacity for non-signalized intersections [12], due the fact that
vehicles also yield to others in order to cross.

capapp =
qoppe

−qoppTcr

1 − e−qoppT0
(19)

where qopp is the flow on the opposite traffic (the number of
scheduled vehicles to pass the stop line over the green period),
Tcr is the critical gap time and T0 is the follow-up time. After
that, we estimate a possible waiting time wait_time (to be
summed to the evt4time) if left-turning vehicles need to yield
to opposite preferential traffic.

wait_timep =

{
1/capapp if qopp > 0

0 otherwise
(20)

C. Traffic Signal Control Strategies

Fig. 2 presents the basic flow with all of our proposed
strategies together.

Fig. 2. Proposed traffic signal control strategies

The common attribute among our proposed strategies is the
expect_greenp for each phase p, which represents the green
time to ensure the last vehicle, with difference of evt4time,i
with a leader vehicle (or stop line) shorter than a maximum
allowed gap max_gapi, will cross the stop line:

max_gapi = min

{
ref_gap

(
vdesi
vi

)
,max_dyn_gap

}
(21)

where ref_gap is a reference of maximum time gap and
max_dyn_gap an absolute maximum time gap. Eq. 21 deals
to situations that could lead to gaps higher than the ref_gap,
and ensure that CVs will be able to cross the stop line if they
are slow or stopped under low penetration rates. Additionally,
the determination when a phase p gets green begin_greenp is
based on the sequence of phases in the cycle.



Our first strategy is a traffic actuated control named
Dynamic Maximum Gap (DMG), which monitors the
expect_greenp at every time step and (from its minimum
green time min_greenp) keeps extending the current phase.
If the current phase cp reaches its maximum green time or no
vehicle has gap shorter than its max_gapi, then it changes the
phase following a predefined sequence of phases.

The second and third strategies correspond to adaptive traffic
control. Their only difference are the decision variables, the
Throughput Adjusted Delay (TAD) uses the estimated total
delay of choosing a phase with certain green duration, while
the Throughput Adjusted Stopped Time (TAST) is based on
the total time stopped (waiting time). For those strategies we
created a maximum interval without green for each phase
that limits the green time of a conflicting phase, allowing to
skip phases but maintain minimum green time. All phases p
in which their max. time max_gp is bigger than their min.
time min_gp (set as the expect_greenp) are analyzed to be
possible next phases pp.

Using the procedure and equations of section II-B, the TAD
and TAST strategies look ahead in a horizon of two "cycles"
to estimate vehicle’s states at all key events if it is applied
each possible phase pp with each green time duration g. This
means a first analyzed green time g (ending at time instant
end_greenpp), and the next green time (e.g. in the second
"cycle") that starts after end_greenpp plus the estimation
of green time for the other conflict phases. Moreover, it is
assumed the application of same green time g on the second
"cycle" for phase pp, what yields to the end of this next
green time at end_next_greenpp. These time instants are used
to apply a penalty pntyi,pp for vehicles not crossing until
end_next_greenpp:

lateness = evt4time,i,pp,g − end_next_greenpp

pntyi,pp =

{
lateness if lateness > 0

1 otherwise
(22)

Then the delay and stopped time (waiting time) for each
vehicle i under possible phase pp with duration g are:

delayi,pp,g =
(
evt4time,i,pp,g − evt4time,i,last

)
pntyi,pp (23)

stopsi,pp,g =
(
evt3time,i,pp,g − evt2time,i,pp,g

)
pntyi,pp (24)

where evt4time,i,last represents the last estimation of stop line
time-of-arrival for vehicle i without getting any delay from
the traffic signal, while stopsi,pp,g also accounts waiting time
at previous "cycles". Another metric is throughputpp,g (in
veh/s), which represents the amount of vehicles that will cross
the stop line under possible phase pp with duration g from
the decision time of the next phase until end_next_greenpp.
Finally, the selected phase and duration time will be the one
with the lowest decision variable dec_varpp,g:

dec_varpp,g =

{ ∑
i delayi,pp,g

throughputpp,g
if TAD∑

i stopsi,pp,g
throughputpp,g

if TAST
(25)

III. SIMULATION AND RESULTS
We wrote our connected vehicle traffic signal control algo-

rithms in Python [13], and simulated it using Simulation of
Urban Mobility (SUMO) [7] via TraCI (the interface between
SUMO and Python) [14]. Fig. 3 shows the flow volumes
and the intersection model. The speed limit is 70 km/h
and each approach is around 560 meters long (though the
communication range for connected vehicles is 400 meters),
while the left-turn bays have 100 meters.

From [15] we define the amber time of 4 s, and safety
time as 3 s (1 for red clearance and 2 of red + amber time),
as well as the number of phases with their necessary green
times (seen on Table. II). The minimum green time for non-
peak flows is based on the driver expectancy, while for peak
flows we use the Webster’s optimal cycle length model and
the maximum degree of saturation of the approaches for each
phase. Moreover, the saturation flow is 1800 veh/h for cases
without yield, otherwise Eq. 19.

Fig. 3. SUMO intersection model and flow volumes

TABLE II
GREEN TIMINGS FOR PHASES

Phase/Flow Min. [s] Max. [s] Max. Int. [s] Fixed [s]
Peak Main W-E 5 60 90 11
Peak Main N-S 5 60 90 15
Peak Ext. W-E 5 20 180 3

N-Peak Main W-E 18 60 90 33
N-Peak Main N-S 21 60 90 45
N-Peak Ext. W-E 7 20 180 9

The setup of the traditional actuated signal control works
by prolonging traffic phases, and it switches to the next phase
after detecting a time gap between vehicles longer than 3 s.
The detectors on each approach are positioned 38.88 m in
front of the stop line (2 s times the speed limit of 19.44 m/s).

For our proposed strategies, we use SUMO’s standard values
[16] for the data (Table I) of AV’s, including the distance gap



dist_gap of 2.5 m. The critical time gap for left-turn vehicles
Tcr is 5.5 s for cars and 7 s for trucks, while the follow-up
time T0 is 60% [17]. We conducted several simulations and 4
s was the best performing value for the reference maximum
gap ref_gap, while 10 s for max_dyn_gap. In addition,
as we use (unrealistic) static accelerations and deceleration
(what overestimate them), we use 85% of their values. The
minimum number of CV’s per hour to sample the O-D pair
flow min_cvph was set to 40.

The experiment comprises several scenarios, for peak and
non-peak flows, as well as for 10%, 25%, 50%, 75%, and
100% penetration rate (PR) of connected vehicles. We carried
out 115 replications to guarantee at least 95% confidence
level of the results, based on the formula for the number of
replications found on [18]. The simulation time is 1 hour. The
confidence intervals of waiting time and delay aggregated for
all vehicles can be seen on Table III, while Figs. 4 and 5 show
the Box-plot of trip duration.

TABLE III
CONFIDENCE INTERVALS OF WAITING TIME AND DELAY

Control
and PR

Waiting Time [s] Delay [s]
Non-Peak Peak Non-Peak Peak

TAST 10% 11.2 ± 0.2 29.7 ± 0.5 21.2 ± 0.3 51.6 ± 0.9
TAD 10% 12.3 ± 0.2 30.1 ± 0.6 22.2 ± 0.3 51.8 ± 1.0
DMG 10% 21.7 ± 0.4 61.0 ± 2.1 37.0 ± 0.6 106 ± 3.7
TAST 25% 9.2 ± 0.1 28.8 ± 0.4 18.7 ± 0.2 50.2 ± 0.7
TAD 25% 10.5 ± 0.2 29.3 ± 0.6 19.9 ± 0.2 50.5 ± 1.1
DMG 25% 12.2 ± 0.2 26.4 ± 0.6 23.9 ± 0.2 46.7 ± 0.9
TAST 50% 7.5 ± 0.1 27.8 ± 0.7 16.3 ± 0.1 48.5 ± 1.1
TAD 50% 8.3 ± 0.1 28.7 ± 0.6 17.1 ± 0.2 49.6 ± 1.0
DMG 50% 7.8 ± 0.1 21.4 ± 0.3 18.1 ± 0.1 39.2 ± 0.4
TAST 75% 5.6 ± 0.1 26.1 ± 0.5 13.8 ± 0.1 45.9 ± 0.9
TAD 75% 6.3 ± 0.1 27.0 ± 0.6 14.5 ± 0.1 47.4 ± 1.1
DMG 75% 5.9 ± 0.1 21.4 ± 0.2 15.7 ± 0.1 38.8 ± 0.3

TAST 100% 3.4 ± 0.0 22.8 ± 0.4 11.0 ± 0.1 41.9 ± 0.7
TAD 100% 4.0 ± 0.1 22.9 ± 0.4 11.6 ± 0.1 41.9 ± 0.6
DMG 100% 2.7 ± 0.0 19.2 ± 0.3 11.1 ± 0.1 36.2 ± 0.4

Actuated 12.8 ± 0.1 22.7 ± 0.3 24.0 ± 0.2 40.9 ± 0.4

Fig. 4. Trip duration results for non-peak flows

Fig. 5. Trip duration results for peak flows

The most positive gains were on non-peak flows, but as
long as the flows increases and the penetration rate decreases
the improvements of the proposed algorithms become less
expressive. As our DMG algorithm updates every time step, it
is more reliant on the PR and flow volumes because switches
phases right after the last vehicle with short gap crosses the
stop line (compared to the actuated that waits for 3 seconds),
therefore many non-CV and less phase changes means less
savings (e.g. peak flows). The TAD and TAST algorithms
update at the end of the current phase (because if phases
would have similar decision variable values it would change
too much), thus they depend mainly upon the future prediction
within 2 cycles, what can waste few seconds due to inaccuracy.

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper we investigate contributions of modern vehicle
technologies to the Smart Cities initiative, focusing on the ben-
efits related to mobility and sustainability of resources through
sharing information from vehicles to the city infrastructure.
We proposed three strategies for traffic signal control that use
only information from connected vehicles (CV), and compared
them against a traditional actuated signal control variating
traffic flows and the Penetration Rate (PR) of connected
vehicles. Our Dynamic Maximum Gap (DMG) algorithm is the
fastest one to adjust to the real-time traffic conditions, though
influenced by the precision of non-CV modeling. While the
Throughput Adjusted Delay (TAD) and Throughput Adjusted
Stopped Time (TAST) tolerate low PR but their performance
is undermined by estimation of each vehicle future state and
the stochasticity of arrivals during the analyzed horizon.

Future research could contribute by exploring the simpli-
fications and assumptions of our strategies. For instance, the
Exponential Distribution is generally used only for isolated
intersections with random low flow arrivals, and Eq. 19 works
only for such type of distribution. Our model to estimate
vehicle states (presented in Section II-B) assumes constant



acceleration/deceleration and it is does not deal with multi-lane
approaches. Therefore, extend the control considering multiple
intersections and realistic driver/vehicle behaviour, as well as
assessment of environmental and economical benefits are the
next logical steps. We also believe other information (e.g.
CV measurements of distance to other vehicles) could help
modeling non-CV, while estimating future arrivals within 2
"cycles" may improve the performance. Finally, infrastructure
advice regarding speed could create platoons of vehicles to
maximize the throughput and minimize waiting time.
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