MAVEN

(Managing Automated Vehicles Enhances Network)

Concepts and developments for infrastructure-assisted automated driving

Michele Rondinone

Hyundai Motor Europe Technical Center GmbH, Germany

C2C Forum 2018 21.11.2018 Lelystad, The Netherlands

General Information

- Duration
 - √ 36 months (Sept '16 Aug '19)
- Funding
 - √ ~3M€ under EC H2020 programme
- Partners:
 - ✓ From five countries: DE, NL, CZ, BE, UK

- Website
 - ✓ <u>www.maven-its.eu</u>

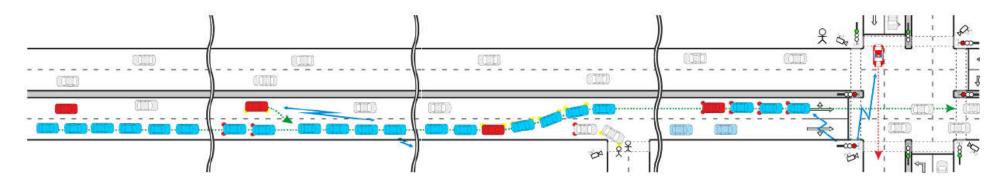
Project summary

Assumption

■ Road infrastructure applications will still play a key role in future cooperative automated driving era

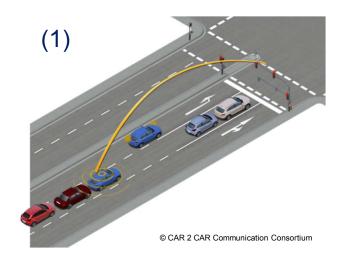
Main objective

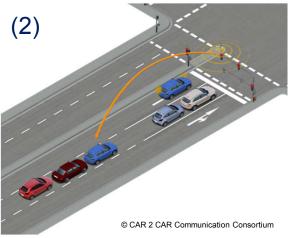
Increasing traffic efficiency and safety in urban areas by exploiting automated driving

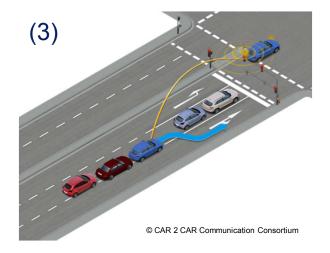

Approach

- C-ITS infrastructure-based traffic management solutions for cooperative automated vehicles (CAVs) at signalized intersections (traffic lights) and intersection corridors
- V2X-based automated driving extensions for perception and planning
- Use of simulation verification as well as road experiments with CAV and infra prototypes (ETSI ITS G5-based)

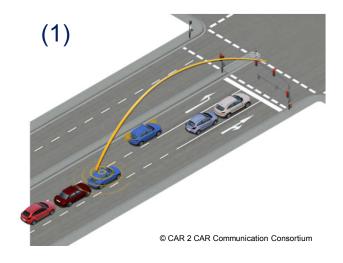
Use cases overview


I2V interactions


- ✓ V2I "explicit" probing + I2V speed/lane advisory + V2I feedbacks on compliance to advisories
- Traffic controllers optimization
 - Signal optimization, priority management, queue estimation, green wave
- Platoon management
 - ✓ Forming, joining, travelling in, leaving, breaking a platoon
- Inclusion of conventional traffic and VRUs
 - ✓ Detection/reaction in presence of non-coop cars & VRUs



MAVEN I2V interactions

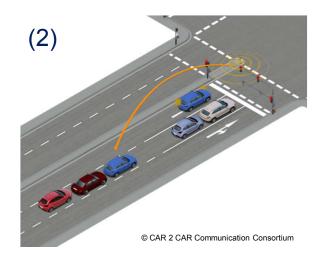


- V2I explicit traffic probing (1)
 - ✓ CAVs and/or platoons transmits planned route, desired speed, platoon characteristics, etc.
- ☐ Traffic light controller signal timing re-optimization and I2V advisories (2)
 - ✓ Based on rx info/calculations, infra transmits speed /lane change advisories
- V2I feedbacks on compliance to advisories (3)
 - CAVs and/or platoons communicate if advisories can be executed
 - If yes, traffic light controller "freezes" signal timing optimization

European Commission

V2X for I2V interactions (1)

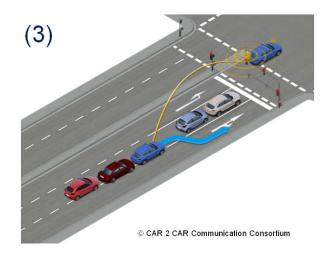
Ext CAM on SCH0			ItsPduHeader (as in [ETSI EN 302 637-2])
	CoopAwareness		GenerationDeltaTime (as in [ETSI EN 302 637-2])
		(n	BasicContainer (as in [ETSI EN 302 637-2], includes car position)
		AMParameters	HighFrequency Container = BasicVehicleContainerHighFrequency (as in [ETSI EN 302 637-2], includes dynamic info)
Ext		CAMPar	LowFrequencyContainer = BasicVehicleContainerLowFrequency (as in [ETSI EN 302 637-2])
			SpecialVehicleContainer = MavenAutomatedVehicleContainer


Message for V2I traffic probing

- ✓ Backward-compatible extension of CAM (on Day1 SCH0)
- ✓ MavenAutomatedVehicleContainer includes info needed by TLC
 - ✓ CAV route at intersection (e.g. Ingress/egress lane)
 - ✓ Distance to preceding/following vehicle
 - ✓ Platoon id (tx by platoon leader if platoon is present)
 - ✓ Platoon participants (tx by platoon leader if platoon is present)
 - Desired platoon speed (tx by platoon leader if platoon is present)
 - \checkmark

V2X for I2V interactions (2)

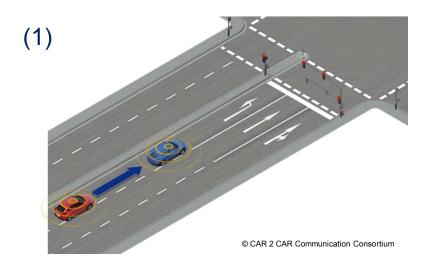
MAPEM		ItsPduHeader (as in [ETSI EN 302 637-2])
MAVEN MAPEM		MapData (as in ISO 19091 DSRC, profiled with lane-specific SignalGroups)
MAPEM		ItsPduHeader (as in [ETSI EN 302 637-2])
MAVEN MAPEM		SPAT (as in ISO 19091 DSRC, profiled with lane-specific SignalGroups)
MAVEN LAMEM		ItsPduHeader (as in [ETSI EN 302 637-2])
ENL	AM	TimeInfo
MA		LaneAdviceList


Messages for I2V advisories

- ✓ Lane-specific GLOSA
 - Suggests speed to be adopted on a given lane, calculated based on queue estimation
 - ✓ Use current standard SPATEM/MAPEM profiled to allocate lane-specific signal groups when needed
- ✓ Lane change advice message
 - ✓ Suggests the lane a CAVor platoon should change to at an intersection
 - ✓ Indicates target lane, distance to stop line, and time for starting the maneuver
 - ✓ Uses a newly defined Lane Advisory Message (LAM) including individual advices

V2X for I2V interactions (3)

Ext CAM on SCH0		ItsPduHeader (as in [ETSI EN 302 637-2])		
	CoopAwareness		GenerationDeltaTime (as in [ETSI EN 302 637-2])	
		arameters	BasicContainer (as in [ETSI EN 302 637-2], includes car position)	
			HighFrequency Container = BasicVehicleContainerHighFrequency (as in [ETSI EN 302 637-2], includes dynamic info)	
		CAMPar	LowFrequencyContainer = BasicVehicleContainerLowFrequency (as in [ETSI EN 302 637-2])	
			SpecialVehicleContainer = MavenAutomatedVehicleContainer	


■ Message for V2I feedbacks on compliance to advisories (3)

- ✓ Backward compatible extension of CAM message (on Day1 SCH0).
- ✓ MavenAutomatedVehicleContainer includes feedback needed by TLC
 - ✓ Real-time Acknowledgment on whether the GLOSA is being applied by the CAV
 - Real-time Acknowledgment on whether the lane change is being executed by the CAV

MAVEN platooning

Mix between distributed and centralized approach

- ✓ Based on common distributed algorithm and V2V exchanged info, individual vehicles form platoons and manage their operation (joining, leaving, etc.) (1)
- Yet, platoon leader has the central role of communicating platoon features to the infra for explicit traffic probing (2)

■ Use of 2 parallel ITS G5 channels

- One for advertising vehicle and/or platoon characteristics to other vehicles or infra
- ✓ The other, to convey more frequent platoon control and management info

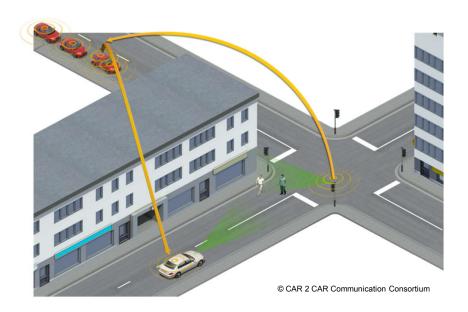
V2X for MAVEN platooning

Ext CAM on SCH0			ItsPduHeader (as in [ETSI EN 302 637-2])
	CoopAwareness		GenerationDeltaTime (as in [ETSI EN 302 637-2])
		CAMParameters	BasicContainer (as in [ETSI EN 302 637-2], includes car position)
			HighFrequency Container = BasicVehicleContainerHighFrequency (as in [ETSI EN 302 637-2], includes dynamic info)
			LowFrequencyContainer = BasicVehicleContainerLowFrequency (as in [ETSI EN 302 637-2])
			SpecialVehicleContainer = MavenAutomatedVehicleContainer

		ItsPduHeader (as in [ETSI EN 302 637-2])				
×	CoopAwareness		GenerationDeltaTime (as in [ETSI EN 302 637-2])			
SCHX		S	BasicContainer (as in [ETSI EN 302 637-2], includes car position)			
xt CAM on		² arameters	HighFrequency Container = AutomatedVehicleContainerHighFrequency			
Ш		CAMF	CAMP	LowFrequencyContainer = AutomatedVehicleContainerLowFrequency		

Commission

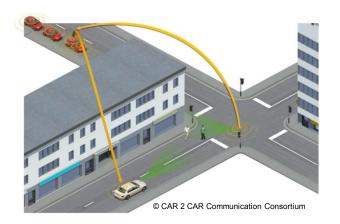
Message for platooning initialization


- ✓ Backward compatible extension of CAM message (on Day1 SCH0)
- MavenAutomatedVehicleContainer carries info for CAVs to detect opportunities for building/joining a platoon (e.g. Based on same expected route, desired speed, etc)

Message for platooning management and control

- CAM tx on a parallel SCH with higher frequency [fixed 10Hz]
- Carries limited set of info
 - ✓ for platoon control (e.g. Planned path, position, speed, acceleration, heading)
 - for platoon management: joining, brake-up, termination (e.g. flags representing the vehicle status in the platoon and used by the platoon logic)

Inclusion of conventional traffic and VRUs


Use of collective perception for improved detection and reaction

- ✓ Both CAVs and infra can detect and share info about non-cooperative road users
- ✓ Improved awareness used to adapt CAV maneuver/path planning for increased safety
- ✓ Isolated CAVs or CAVs in platoon keep monitoring the environment and control the system all the time to possibly undertake emergency (automated) reactions


V2X for inclusion of conventional traffic & VRUs

CPM			ItsPduHeader (as in [ETSI EN 102 894-2])
	CollectivePerception		GenerationDeltaTime (as in [ETSI EN 302 637-2])
		ameters	OriginatingStationContainer
		⊟ਲਾ	SensorInformationContainer
		CPMP	PerceivedObjectContainer

Message for collective perception

- ✓ Adoption of Collective Perception Message (CPM) in pre-standardization at ETSI ITS (TR 103 562 and TS 103 324) and consideration at the C2C-CC
- ✓ Active contribution to ETSI CPM standardization to accommodate MAVEN requirements.
 - ✓ General restructuring of CPM to accommodate detections from RSUs
 - ✓ Definitions based on RSU-specific reference system in all containers
 - ✓ Possibility to match detected objects to topological information transmitted in MAP messages

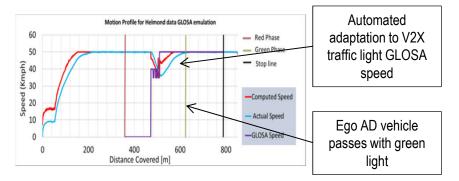
Latest developments & future work

Latest developments

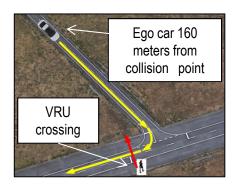
- V2X verification on test bench and integration in cooperative automated driving SW frameworks
- Recording of real V2X traffic light data (SPAT/MAP) to reuse in AD tests
- ✓ AD tests of speed adaptation, cooperative lane change and collective perception on test track
- ✓ Initial V2X interoperability tests for platooning (Hyundai + DLR vehicles)

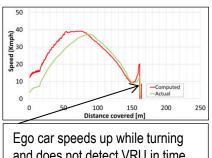
Next steps:

- ✓ Complete platooning tests on test track
- Test I2V and V2V use cases on real road (Helmond + Braunschweig)

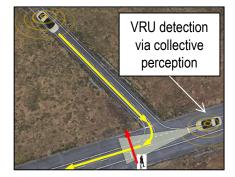


Initial results

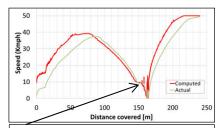

Automated speed adaptation to V2X GLOSA


GLOSA speeds provided by infra @ multiple zones dynamically adapted to real signal phase and timing

Detection/reaction via collective perception



Scenario 1: ego car without V2X CPM, only ego sensors used



and does not detect VRU in time

→ manual braking to avoid
collision

Scenario 2: ego car also considers V2X CPM info

Ego car knows about VRU (via V2X), smoothly slows down while turning, detects VRU in time → automated braking, collision is prevented; speeds up again after VRUs crosses

Additional information can be found atat:

www.maven-its.eu

Do not hesitate to contact us!

Thank you!

Questions?

