Implementation and Testing of Dynamic and Flexible Platoons in Urban Areas

Schindler, Julian¹; Dariani, Reza¹; <u>Rondinone, Michele²</u>; Walter, Thomas²

¹German Aerospace Center (DLR), Institute of Transportation Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany

²Hyundai Motor Europe Technical Center GmbH (HMETC), Hyundai-Platz, 65428 Rüsselsheim, Germany

MAVEN

European H2020 project

- Period: 01-09-2016 ~ 31-08-2019
- Budget: € 3.149.661,-

Assumption:

 Road infrastructure applications will still play a key role in future cooperative automated driving era

Main objective

 Increasing traffic efficiency and safety in urban areas by exploiting automated driving

Approach

- C-ITS infrastructure-based traffic management solutions for cooperative automated vehicles (CAVs) at signalized intersections (traffic lights) and intersection corridors
- V2X-based automated driving extensions for perception and planning
- Use of simulation verification as well as road experiments with CAV and infra prototypes (ETSI ITS G5-based)

Use cases overview

I2V interactions

 V2I "explicit" probing + I2V speed/lane advisory + V2I feedbacks on compliance to advisories

Traffic controllers optimization

✓ Signal optimization, priority management, queue estimation, green wave

Platoon management

- ✓ Forming, joining, travelling in, leaving, breaking a platoon
- Inclusion of conventional traffic and VRUs
 - Detection/reaction in presence of non-coop cars & VRUs

Highway Platooning vs. Urban Platooning

Main focus:

Reduced fuel consumption

But:

- Simple situations
- Rel. high speeds

Main focus:

- High throughput on intersections But:
- Complex situations
- High flexibility needed

Urban Platooning: Approach

- Flexibility in focus:
 - Vehicles can join/leave at any time
 - Distances are set individually by the following vehicle
 - As done in Cooperative ACC
 - Each vehicle is the leader of its followers

Each leader communicates with the infrastructure

Communication

V2X Communication

Standard CAM with extension on standard channel

V2V Communication

Standard CAM with extension on extra

channel

Vehicle automation architecture (DLR & Hyundai)

- Partner-specific implementation of "core" AD SW modules
 - DLR: Dominion-based, Hyundai: ROS-based
- Common implementation of C2X functionalities
 - Same message set and interfacing with AD modules
- Common implementation of Platoon logic
 - Provided DLR as a library integrated in decision making modules

Platoon forming, driving, break up

Based on state machine rules:

- If two or more vehicles detect having same features (speed/acceleration ranges)
 & objectives (route at next intersection)
- If no obstacle in between (e.g. Non-cooperative vehicle)
- Respects a predefined time headway:
 - When a cooperative and automated vehicle is detected, a time headway-velocity profile is generated and kept as below figure.
 - For forming desired time headway is 2s and for break up is 4.

HiL testing of communication

- Verification of cooperative functionality at partner-specific implementation
 - Separate tests @ DLR and Hyundai with simulated cars & real communication HW

HiL test of Platoon Logic using two Cohda MK5 units:

(A) RSU for the platoon leader(B) OBU for the follower.

(The functionality of RSU and OBU is equal in this test.)

Test track testing of platoon forming/driving

- Verification of cooperative functionality with combined implementationa
 - Joint real tests with real DLR and Hyundai cars & real communication HW

Test track testing of Platooning + GLOSA (DLR)

Augmented Reality Testing: Using real-road GLOSA on test track

• Recording of SPAT/MAP + GLOSA traces at Tostmann platz

- Replaying of SPAT/MAP + GLOSA traces on Griesheim test track
 - Verifying AD speed adaptation to GLOSA speed

MAVEN

000

Test track testing of real-road GLOSA (HMETC)

GLOSA ADVISORY

GLOSA STATUS : Not Available PREVIOUS ZONE NUMBER : Not Available AND ADVISED SPEED : Not Available CURRENT ZONE NUMBER : Not Available AND ADVISED SPEED : Not Available NEXT ZONE NUMBER : Not Available AND ADVISED SPEED : Not Available CURRENT SIGNAL STATUS : Not Available GLOSA ADVISED SPEED : Not Available CURRENT SPEED : 1.37095e-25 DISTANCE TO INTERSECTION : Not Available

LANE CHANGE ADVISORY

CURRENT LANE INDEX : 0 REQUESTED LANE INDEX : Not Available DISTANCE TRAVELLED : 0.109736 ORIGINATING LEADER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available LEFTLANE LEADER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available LEFTLANE FOLLOWER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available RIGHTLANE LEADER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available RIGHTLANE FOLLOWER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available RIGHTLANE FOLLOWER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available RIGHTLANE FOLLOWER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available RIGHTLANE FOLLOWER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available RIGHTLANE FOLLOWER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available RIGHTLANE FOLLOWER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available RIGHTLANE FOLLOWER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available RIGHTLANE FOLLOWER : ACTUAL GAP: Not Available AND DESIRED GAP : Not Available

C2X OBJECT INFORMATION

OBJECT INFO FROM C2X : Not Available C2X OBJECT DISTANCE : Not Available

Augmented Reality Testing: Using quasi-real road layouts on test track

Augmented Reality Testing: Interacting with virtual vehicles

Tostmannplatz public road testing

WORK IN PROGRESS!!!

Some platoon initialization instances, but functionality to be tested more extensively for consistency!!!

AVEN HMI on DLR car car

Reference Speed
 Actual Speed
 GLOSA Advised Speed
 Green Phase
 Yellow Phase
 Red Phase
 Stop Line

14.

32 km/ł

Hyundai and DLR cars

car

GLOSA adaptation on

Additional information can be found atat:

www.maven-its.eu

Do not hesitate to contact us!

Thank you!

Questions?

