Automated driving Infrastructure perspective

Robbin Blokpoel – 25th May 2018

Introduction

History

First idea: In the World's Fair of 1893 in New York, General Motors presented vision of "driverless cars".

Three main stages of research:

- 1980-2003 : University researchers developed AVs in two groups
 - Dumb vehicle, smart dedicated lanes Vehicle relies on infrastructure
 - Automated vehicles
- From 2003 : DARPA Grand challenges boosted research
- Recently private companies and vehicle industries have advanced AVs

energising mobility

Introduction

Levels of automation

- Level 2 widely available on the market
- Level 3 is controversial due to unexpected transitions
- Most agree we should proceed directly from Level 2 to Level 4/5

Technology

Two paradigms for automated driving

Situation assessment

- In case situation *x* occurs, take action *y*
- Very predictable, easy to prove vehicle will respond well to pre-defined situations
- Problem may occur when unknown situation occurs

Data driven

- Learn from millions of hours of human driving footage
- Difficult to prove safety
- Vehicle will behave more naturally and should be robust against unexpected situations
- www.comma.ai

Technology – vehicle systems (1/3)

dynniq energising mobility

Technology – vehicle systems (2/3)

Technology – vehicle systems (3/3)

dφnniq

energising mobility

MAVEN project

- Website: <u>www.maven-its.eu</u>
- Duration: 01-09-2016 to 31-08-2019
- Funding: 3M€ under EC H2020 programme
- 9 partners from 5 EU countries:

Objectives

- Increase safety with collective perception (alternative: very slow driving)
- Increase efficiency by exploiting possibilities of automated driving

Platooning	I2V	Infrastructure
UC1: Platoon initialization	UC7: Speed change advisory	UC11: Queue length estimation
UC2: Joining a platoon	UC8: Lane change advisory	UC13: Green wave
UC3: Traveling in a platoon	UC9: Emergency situations	UC14: Signal optimization alg.
UC4: Leaving a platoon	UC10: Priority management	
UC5: Platoon break-up	UC12: Local level routing	
UC6: Platoon termination	UC15: Negotiation	
	UC16: Detect non-cooperative road users	

Architecture

Architecture

New Data Element	Applicable scenario	
Number of occupants	Intersection priority management.	
Distance to following vehicle	Queue estimation. This information can improve queue model accuracy, leading to more optimal solutions for GLOSA negotiation and signal timing	
Distance to preceding vehicle		
Platooning state	Signal optimization and intersection priority	
Desired speed	Queue estimation and GLOSA negotiation	
Current lane	Lane advice, multiple lanes for a certain direction	
Route information	Queue estimation, signal optimization and GLOSA	

dynniq energising mobility

Application: GLOSA negotiation

- Intersection shares SPaT
- Vehicle sends extended CAM (speed, direction, platooning)
- Intersection recalculates SPaT
- Vehicle acknowledges advice
- Intersection stabilizes control plan

φηρηία mobility

Platooning

- Distributed algorithm
- Vehicle-centric
- Infrastructure can steer on high level
- Consists of 4 state machines
- Relies on new messages

Message sets

- Extended CAM for automation and negotiation
- Profiled MAP/SPaT for lane specific GLOSA
- New LAM (Lane Advice Message)
- Extension to CPM (Collective Perception Message)
 - RSU detections can be included as well
 - Possibility to link to MAP message topology for efficiency

Framework Programme, under Grant Agreement No. 690727

15

TransAID project

- Transition Areas for Infrastructure-Assisted Driving
- 01/09/2017 ~ 31/08/2019
- Budget: EUR 3,836,353.75
- Seven partners from 6 countries: DE, UK, BE, NL, EL, ES

dynniq energising mobility

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390

TransAID use cases

Strategies:

dor

- Spread Transition of Control (ToC)

energising

mobility

- Advice to prevent ToC and increase efficiency
- Manage Minimum Risk Maneuvres (MRM)

Questions?

Contact: Robbin.Blokpoel@Dynniq.com

