Traffic Management through C-ITS and Automation: a perspective from the U.S.

Matthew Barth University of California-Riverside Yeager Families Professor Director, Center for Environmental Research and Technology barth@cert.ucr.edu

Shared Mobility

Electrification

Connected

Automated


SMART CITIES: THE WAVE OF THE FUTURE FOR CITIES

US DOT: Twelve elements in four #5 : Mobility Services and Choices #4: Urban Analytics areas make up a smart city : #6: Urban Delivery and Logistics **#9: Connected Involved Citizens** Urban Automation **VEHICLE / ROADWAY** COMMUNICATIONS **Connected Vehicles** #1: Urban Automation #3 : Intelligent Sensor #2 : Connected Vehicles Infrastructure Intelligent Sensor Infrastructure • #8: Roadway Electrification #11: Information and **Comm** Technology • Urban Analytics Mobility Services Integrated Community System Urban Delivery **Business Models & Partners** STANDARDS / ECOLOGY PARTNERSHIP **Roadway Electrification** #12 : Smart Land Use **#7**: Business Models and Connected Citizens Partners # 10: Architecture and Architecture & Standards Standards Information and Communication Technology Smart Land Use

Vehicle Connectivity:

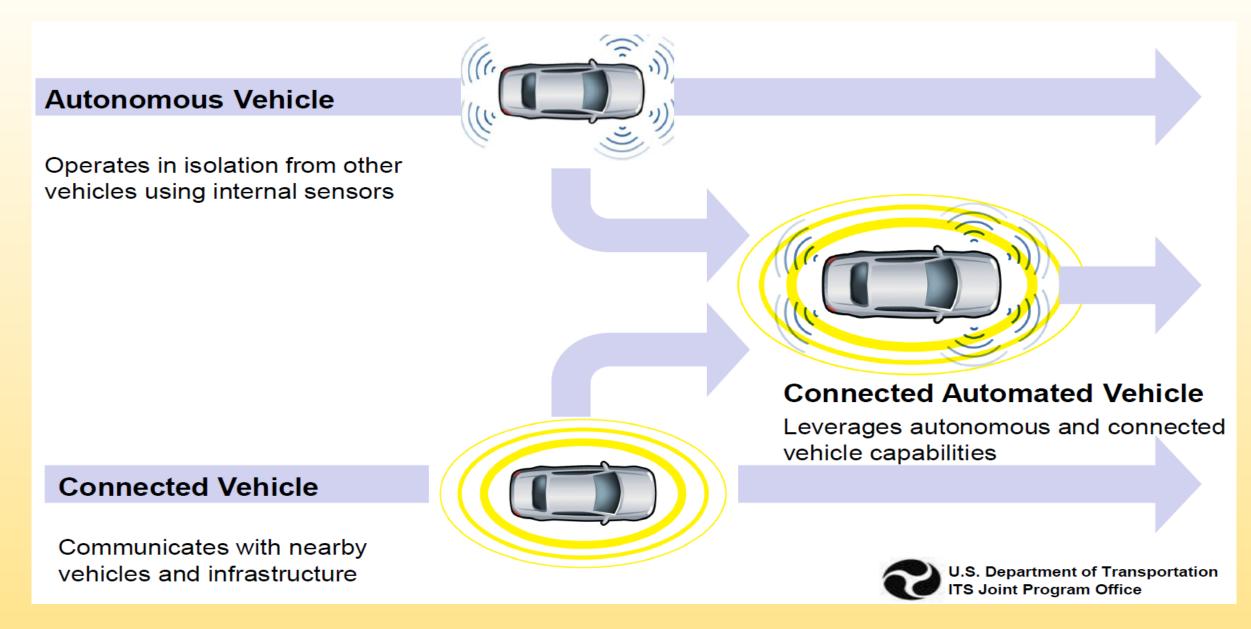
- Many forms of vehicle connectivity exist: cellular, short range radios, 5G
- Connectivity includes V2V, V2I, V2X
- Connectivity in vehicles is being mandated for safety reasons; there are many secondary benefits for mobility and energy
- Enables many more applications

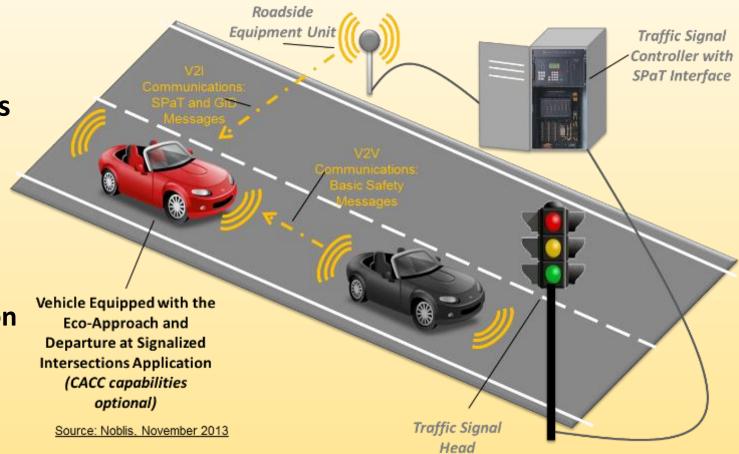
C-ITS Applications in the U.S. (see https://local.iteris.com/cvria/)

V2I Safety	Environment	Mobility	
Red Light Violation Warning Curve Speed Warning Stop Sign Gap Assist	Eco-Approach and Departure at Signalized Intersections Eco-Traffic Signal Timing	Advanced Traveler Information System Intelligent Traffic Signal System (I-SIG)	
Spot Weather Impact Warning Reduced Speed/Work Zone Warning Pedestrian in Signalized Crosswalk Warning (Transit)	Eco-Traffic Signal Priority Connected Eco-Driving Wireless Inductive/Resonance Charging	Signal Priority (transit, freight) Mobile Accessible Pedestrian Signal System (PED-SIG) Emergency Vehicle Preemption (PREEMPT)	
V2V Safety	Eco-Lanes Management	Dynamic Speed Harmonization (SPD- HARM)	
Emergency Electronic Brake Lights (EEBL) Forward Collision Warning (FCW) Intersection Movement Assist (IMA) Left Turn Assist (LTA) Blind Spot/Lane Change Warning (BSW/LCW) Do Not Pass Warning (DNPW) Vehicle Turning Right in Front of Bus Warning (Transit) Agency Data Probe-based Pavement Maintenance	Eco-Speed Harmonization Eco-Cooperative Adaptive Cruise Control Eco-Traveler Information Eco-Ramp Metering Low Emissions Zone Management AFV Charging / Fueling Information Eco-Smart Parking Dynamic Eco-Routing (light vehicle, transit, freight) Eco-ICM Decision Support System	Queue Warning (Q-WARN) Cooperative Adaptive Cruise Control (CACC) Incident Scene Pre-Arrival Staging Guidance for Emergency Responders (RESP-STG) Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE) Emergency Communications and Evacuation (EVAC) Connection Protection (T-CONNECT) Dynamic Transit Operations (T-DISP)	
Probe-enabled Traffic Monitoring Vehicle Classification-based Traffic Studies	Road Weather Motorist Advisories and Warnings (MAW)	Dynamic Ridesharing (D-RIDE) Freight-Specific Dynamic Travel Planning and Performance Drayage Optimization	
CV-enabled Turning Movement & Intersection Analysis CV-enabled Origin-Destination Studies Work Zone Traveler Information	Enhanced MDSS Vehicle Data Translator (VDT) Weather Response Traffic Information (WxTINFO)	Smart Roadside Wireless Inspection Smart Truck Parking	

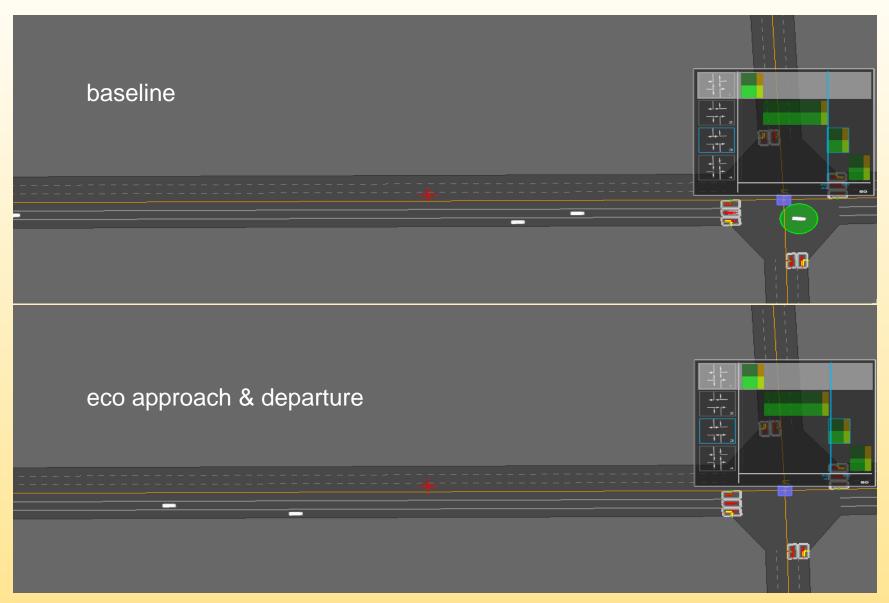
Automation:

- Automated and autonomous vehicles
- Level of automation:
 - Level 0: 100% human control
 - Level 1: Individual module is automated
 - Level 2: 2+ modules are automated in unison
 - Level 3/4: conditional automation for specific scenarios
 - Levels 5: 100% automation
- Personalized automated vehicles can lead to a significant increase in traffic, worse air quality, and wasted fuel
- When matched with shared mobility and electric drive, automation benefits can fully be realized





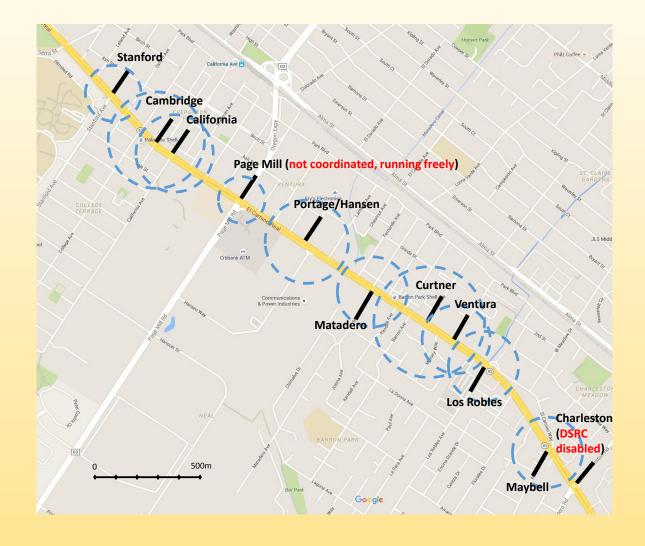
Merging of Connected Vehicles and Automation

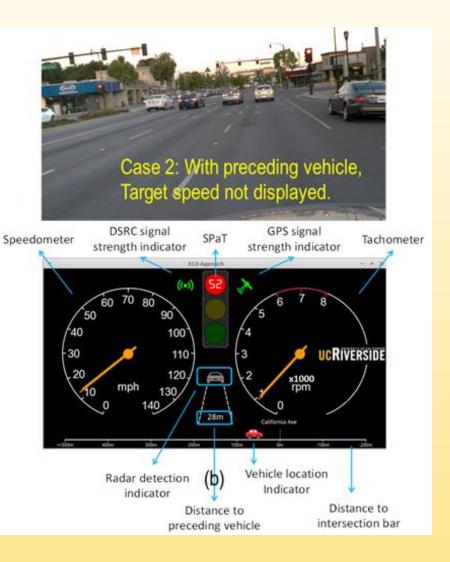


Near-Term Deployment: Eco-Approach and Departure at Signalized Intersections (aka GLOSA, TOSCo, Intelligent Signals, etc.)

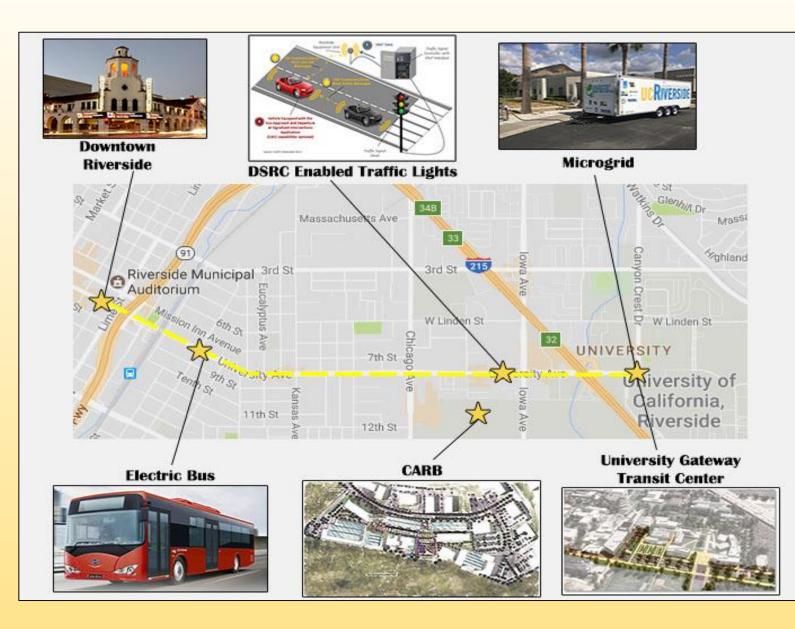
- Application utilizes traffic signal phase and timing (SPaT) data to provide driver recommendations that encourage "green" approaches to signalized intersections
- Example scenarios:
 - Coast down earlier to a red light;
 - Modestly speed up to make it (safely) through the intersection on green
- Mobility Improvements: 5% 20%
- Energy Savings: 10% 20%

Simulation Modeling...




Eco-Approach and Departure at Signalized Intersections: Various Field Studies across the United States

Technology	Location	Scenario	Communication	Energy Savings	Ref
	Richmond, CA	1	4G/LTE	14%	[1]
EAD with Fixed Signals	Riverside, CA	1	DSRC	11%-28%	[2]
	McLean, VA	1	DSRC	2.5%-18%	[2]
EAD with Actuated	Riverside, CA	1	DSRC	5-25%	[3]
Signals	Palo Alto, CA	2	DSRC	7%	[4]
GlidePath (HMI- assisted)	McLean, VA	1	DSRC	10-20%	[5]
TOSCo	Ann Arbor, MI	2	DSRC	TBD	TBD
	Conroe, TX	2	DSRC	TBD	TBD


Scenario 1: Single Vehicle; Scenario 2: Mixed Traffic

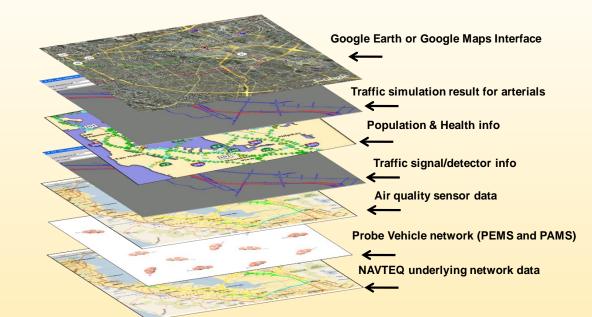
FIELD TESTING IN PALO ALTO, CALIFORNIA

CASE STUDY: CITY OF RIVERSIDE INNOVATION CORRIDOR

- Six mile section of University Avenue between UC Riverside and downtown Riverside
- All traffic signal controllers are being updated to be compatible with SAE connectivity standards
- UCR/City have installed Dedicated Short Range Communication modems at each traffic signal
- Plans to also equip corridor with new generation air quality sensors
- Corridor will be used for connected and automated vehicle experiments (ARPA-E hybrid bus, light-duty vehicles, etc.)

CASE STUDY: CITY OF RIVERSIDE INNOVATION CORRIDOR

Infrastructure



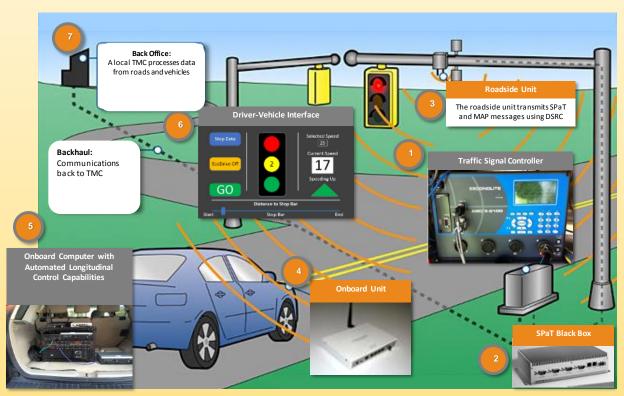
Traffic Controller

Red light detection and countdown

On-Board Driver's Aid

Big Data Integration



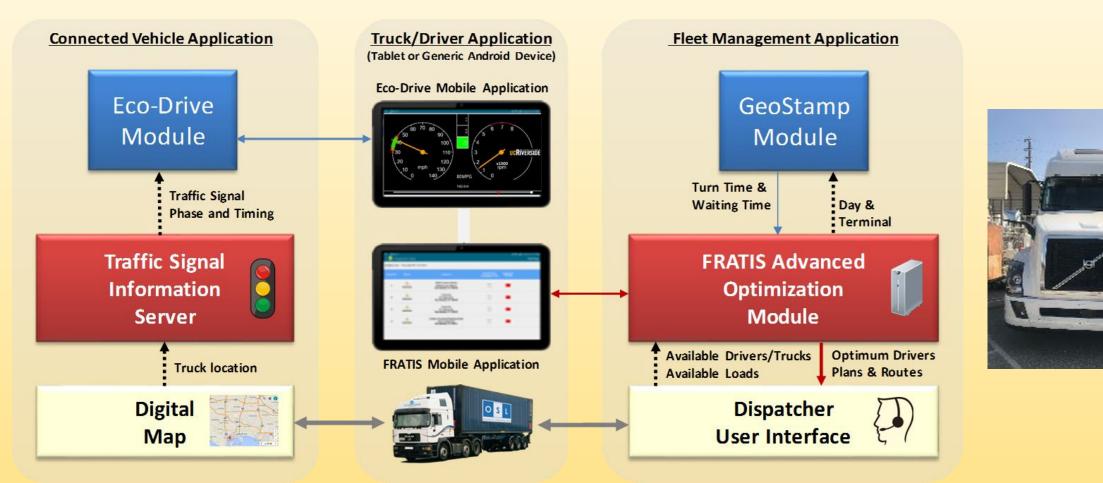

City Traffic Management Center

Connected with Automation: FHWA GlidePath Project

- Automates longitudinal control of vehicle
- Research with US Federal Highway Administration
- Energy benefits without automation: ~7%
- Energy benefits with automation: ~25%

	Independent			Cooperative		Driving Modes	
1	Approach and Departure		ture	Emergency vehicle			
	Merging and Diverging		ing	Eco-drive		Tartin	
	Passing and Overtaking		ing	Route following		Tactics	
	Longitudinal vehicle motion control		le	Lateral vehicle motion control		Dynamic Driving Task	
	Basic longitudinal control Position Navigation & Timing Road Object and Event sensing		ntrol	Basic latera	l control		
			iming	V2x communications - O In-Vehicle sensing		Operations	
1			sensing				
					<u> </u>		
	Brake actuation	Throttle actuation	Steering actuation	Suspension actuation	Transmission actuation	Subsystems	

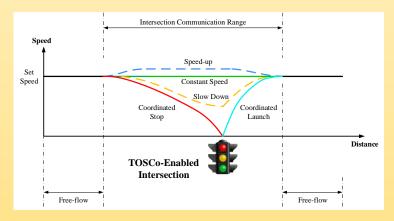
Applying Connectivity to Transit Buses:


Connected Eco-Bus

1 Static information Dynamic information ARPA-E NextCar Program Road SPaT Look-ahead Bus route grade (V2I, I2V) traffic Traffic and **Integrates Powertrain and Vehicle** (Radar) Stop-sign/ Passenger **Road Grade** Bus-stop grade load **Dynamics Controls** location A/C load crossing (V2I) Info: Data processing and prediction dynamic parameter selection Energy consumption Real-time driving condition > 20% fuel & emission savings estimation model Vehicle speed trajectory optimization potential level-2 automation (Eco-AND, Eco-cruise, Eco-stop Level 0 Level 1 Vehicle Advising driving Longitudinal control Driver error input Vehicle dynamics **Dynamics** controls: Power/torque demand Parallel power-split control(learning based) 3 tery Engine supervisory control Electric motor control Fuel consumptio Speed Regenerative braking Smart transmission **Eco-Approach and Departure** Eco-Stop **Eco-Cruise** Powertrain wheels controls: Motion mode (1)Traffic information sensing and prediction (2) Vehicle dynamics optimization Powertrain optimization Distance

Applying Connectivity to Heavy Duty Trucks: ECO-FRATIS

- Test site near Ports of Los Angeles and Long Beach; 15 intersections
- Instrumenting 20 Heavy-Duty Trucks with Ecodriving Aids (including EAD)
- SPaT is being communicated via cellular 4G network



Traffic Optimization for Signalized Corridors (TOSCo)

- TOSCo system employs communications between Infrastructure and connected vehicles to optimize vehicle fuel economy, emissions reduction and traffic mobility along a signalized corridor
- TOSCo algorithms are hosted on-board a vehicle, collects Signal Phase and Timing (SPaT), intersection geometry (SAE J2735 MAP Data Message, or MAP) and essential information contained in a Roadside Safety Message (RSM) using V2I communications as well as data from nearby vehicles using Vehicle-to-Vehicle (V2V) communications
- Given data, vehicles calculate optimal speed to pass through one or more traffic signals on a green light or to decelerate to a stop and subsequently launch in a performance optimized manner

Traffic Optimization for Signalized Corridors (TOSCo)

- Plymouth Corridor (Ann Arbor, MI)
- 11 intersections
- Speed range: 35 mph 50 mph

- State Highway 105 (Conroe, TX)
- 15 intersections
- Speed range: 45 mph 55 m

Goal: Permanent Installations

Future Activities

- Operate Pilots and Field Deployment to learn long-term benefits
- Examine costs: operations, vehicles, cost-benefit ratios
- How do we make C-ITS systems compatible with future communications systems?
- How do we transition to permanent, sustainable systems?
- What is the right mix of automation in connected vehicles?

Shared Mobility:

- There are many forms of Shared Mobility
- Shared mobility can greatly improve land use and be used as a tool to manage excessive travel demand
- Shared trips tend to be more efficient, reducing energy use and producing less emissions

(from Susan Shaheen, UC Berkeley)

UC Riverside's IntelliShare campus carsharing system

Electrification:

- Electric-drive vehicles have tremendous energy and air quality benefits
- Several traditional OEM companies entering electric-drive arena across modes
- Range and charge-time constraints can be managed when made part of a shared mobility option
- Vehicle Electrification must also consider infrastructure (necessity of microgrids)

SHARED ELECTRIC CONNECTED AUTOMATED VEHICLE RESEARCH

	Safety	Mobility	Vehicle Kilometers Traveled	Environmental Quality
Shared Mobility		solo-passengers multi-passengers	solo-passengers multi-passengers	
Electrification		+	+	
Connectivity	1	1	•	1
Automation		autonomous automated	†	1

Potential Impacts if Deployed Separately, Compared to Current Personalized Car Travel

SHARED ELECTRIC CONNECTED AUTOMATED VEHICLE RESEARCH

	Safety	Mobility	Vehicle Kilometers Traveled	Environmental Quality
Shared Mobility				
Electrification		1	➡	1
Connectivity				
Automation				

Potential Impacts of Coordinated Deployment

Key Questions and Next Steps...

- How do we move from "pilot studies" in C-ITS and automation to continuous operation in a city...
- If we implement elements of C-ITS and automation, how do we manage induced demand and its negative impacts...
- How do cities become "automation-ready"...
- How can we manage and integrate elements of shared mobility, electrification, connectivity, and automation...

THANK YOU!