Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)
Definitions

- **Autonomous Driving**: Autonomy means, that one is able and allowed to make decisions independently and on one's own mind. In the case of autonomous driving a single vehicle can make its own driving decision independently.
- **Automated Driving**: Automation deals about the execution of processes and procedures without human intervention. Hence automated driving implies driving without the intervention of human drivers. Sometimes a further differentiation between fully automated driving and the different automation levels according SAE is done.
- **Connected Driving**: In the case of connected driving information is exchanged between automated as well as non-automated vehicles and other traffic participants and/or infrastructure in an automated way.
- **Cooperative Driving**: Cooperative driving means, that single vehicles and drivers act cooperatively within traffic. This implies, that single traffic participants are coordinating their microscopic aims and actions in the light of improved overall macroscopic effects.
Implications of definitions

• *Connected driving* itself does not necessarily imply *cooperative driving*. Single traffic participants can theoretically use the additional information for their own individual advantage at the cost of others.

• *Autonomous driving* does not intrinsically cause improved traffic. If everybody decides on his own without a *cooperative coordination* with other traffic participants, then chaos and traffic collapses may be a consequence. Normally autonomy is only appropriate in the case of low densities.

• *Automated driving* can lead to significant improvements in traffic, because *cooperative behaviour* can be enforced for robots much easier than for human beings. Robots follow their instructions much more precisely than humans, unless these are autonomous robots which decide to do differently.

• *Connected driving* can accelerate the introduction of *automated driving* significantly, because it enables approaches for collective learning to identify and resolve inappropriate behaviour and driving strategies quickly.
Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID).

Towards Cooperative, Connected and Automated Mobility

Day 1
Awareness starts

Day 2
Automation starts

Day 3
Cooperation starts

Day 4
Future Mobility

Cooperative
"I share where I am and what I hear"
Hybrid connectivity
4G + ITS-G5
Advanced Driver Assistance Systems
2017

Connected
"I share what I see"
Hybrid
+ 5G
Some Roads human backup
2019

Automated
"We can negotiate"
Hybrid
+ new technologies
Most Roads NO human backup
2021

"We can orchestrate"
Hybrid
+ new technologies
Fully automated
2025

Indicative timeline

2030
2035
2040
2045
Projects overview

- MAVEN (MG3.6a)
 - Managing Automated Vehicles Enhances Network
 - 01-09-2016 ~ 31-08-2019
 - Budget: EUR 3.149.661,25
 - Nine partners from five countries: DE, NL, CZ, BE, UK

- TransAID (ART-05)
 - Transition Areas for Infrastructure-Assisted Driving
 - 01-09-2017 ~ 31-08-2019
 - Budget: EUR 3.836.353,75
 - Seven partners from 6 countries: DE, UK, BE, NL, EL, ES

Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)
MAVEN use cases [1/2]

1. Platoon management
 ✓ Forming, joining, progression, leaving, breaking a platoon

2. Infrastructure-to-vehicle interactions
 ✓ Negotiation (signal timing vs. arrival pattern), speed advisory, lane advisory

Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)
MAVEN use cases [2/2]

3. Traffic control optimization (and scheduling)
 ✓ Signal optimization, priority management, queue estimation, green wave

4. Conventional traffic and vulnerable road users
 ✓ Detection of non-cooperative vehicles, VRUs, emergency situations
Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)
Considering Operational Design Domain (ODD)

Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)

Tom Alkim, Rijkswaterstaat, 2017
Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)

Considering Operational Design Domain (ODD)

Tom Alkim, Rijkswaterstaat, 2017
Considering Operational Design Domain (ODD)

Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID).
Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)
Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)

Favaro et al. (2017), Autonomous vehicles’ disengagements: Trends, triggers, and regulatory limitations, Accident Analysis & Prevention, Vol. 110, pp. 136-148
Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)

Favaro et al. (2017), Autonomous vehicles’ disengagements: Trends, triggers, and regulatory limitations, Accident Analysis & Prevention, Vol. 110, pp. 136-148
TransAID use cases (1/3)

Provide vehicle path information

Provide speed, headway and/or lane advice

Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)
TransAID use cases (2/3)

Routing & traffic separation

Orchestration, distribution and scheduling

Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)
Examples V2X extensions

- **V2I – Cooperative Awareness Message**
 - Vehicle route at intersection (intention);
 - Platoon properties (size, length, roles, speed, headway, composition, etc.);
 - Acknowledgments of compliance to lane changes and speed advisory (negotiation).

- **I2V – Lane Advice Message**
 - Suggests the lane a vehicle or platoon should change to at an intersection;
 - Indicates target lane, distance to stop line, and time for starting the manoeuvre;
 - Combined with lane-specific Green Light Optimal Speed Advisory (GLOSA).

- **V2X – Collective Perception**
 - Sharing abstract descriptions of objects detected by vehicle or infrastructure sensors;
 - Created improved awareness even with low market penetration.
Infrastructure Support Levels for Automated Driving

<table>
<thead>
<tr>
<th>Level</th>
<th>Name</th>
<th>Description</th>
<th>Digital information provided to AVs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digital map with static road signs</td>
</tr>
<tr>
<td>A</td>
<td>Cooperative driving</td>
<td>Based on the real-time information on vehicles movements, he infrastructure is able to guide AVs (groups of vehicles or single vehicles) in order to optimize the overall traffic flow</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>Cooperative perception</td>
<td>Infrastructure is capable of perceiving microscopic traffic situations and providing this data to AVs in real-time</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>Dynamic digital information</td>
<td>All dynamic and static infrastructure information is available in digital form and can be provided to AVs</td>
<td>X</td>
</tr>
<tr>
<td>D</td>
<td>Static digital information / Map support</td>
<td>Digital map data is available with static road signs. Map data could be complemented by physical reference points (landmarks signs). Traffic lights, short term road works and VMS need to be recognized by AVs</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Conventional infrastructure / no AV support</td>
<td>Conventional infrastructure without digital information. AVs need to recognize road geometry and road signs</td>
<td></td>
</tr>
</tbody>
</table>

Note: many use cases are fully vehicle-based or have a large vehicle-component.

Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)
MAVEN: transition phases for public authorities

1. Awareness: understand need, urgency and system functionality.
2. Policy & regulation: form an opinion, assess strategic plans and define a course.
3. Digital data (ISAD level D/C): start providing open traffic & infrastructure related data.
 - MAVEN: provide SPATEM and MAPEM data.
4. Traffic management: develop guidelines and implement new practices for vehicle guidance and control.
5. Infrastructure (ISAD level B): implement the basic infrastructure necessary to enable cooperative perception.
 - MAVEN: Install roadside sensors, comms technology and computational resources.
6. Infrastructure (ISAD level A): implement the advanced infrastructure necessary to enable cooperative driving.
 - MAVEN: upgrade UTC systems with sophisticated I2V algorithms.

Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)
Cooperative Automated Driving at Signalised Intersection and Transition Areas

Dr. Jaap Vreeswijk

MAP traffic management
Ptolemaeuslaan 54, 3528 BP Utrecht, the Netherlands
E-mail: jaap.vreeswijk@maptm.nl
Phone: +31 6 4164 7985

Both projects are funded by the EC Horizon 2020 Research and Innovation Framework Programme, under Grant Agreement No. 690727 (MAVEN) and 723390 (TransAID)