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Practical image classification

1. Collect Data 2. Compute Features 3. Learn Models
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Images at test
time differ from
- the images used
to learn the
model!




The Adaptation Problem

_ _ Accuracy: 54% Accuracy: 20%
* Images from different visual

domains have different -
appearances C

* These differences are what we m
refer to as “domain shift”

* Given an abundance of data in a
source domain (e.g. Amazon), how
can we perform a task in a new
target domain with very little
training data (e.g. Webcam)?

amazoncom

(| Webcam/DSLR




Background: Feature-space
Transformations

source




Background: Joint feature and
Parameter Adaptation

(a) SOURCE

(b) TARGET, no adaptation
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(Hoffman et al., ICLR 13)



Conventional Performance is
limited by visual features

Multiclass Accuracy vs #Target Example
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Outline

 What does deep learning offer domain
adaptation and vice-versa?

* A domain-adaptation perspective on large-
scale ImageNet detection

* Beyond binary domain adaptation
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First attempt: unsupervised deep
learning for DA?

Let’s try a simple idea in the spirit of [1]

1) Pre-train unsupervised on both domains to model the data

2) Then, supervised backprop on the source domain to learn the labels

Worse performance for MNIST->SVHN

Negligibly improved performance for SVHN->MNIST

Method

Source

Error Rate

Target

Error Rate

Ours (pre-trained)
Baseline (no pre-training)
Ours (pre-trained)
Baseline (no pre-training)

MNIST
MNIST
SVHN
SVHN

2.79%
1.56%
19.33%
12.38%

SVHN
SVHN
MNIST
MNIST

66.79%
59.20%
41.98%
42.63%

But, the pre-training doesn’t seem to help:
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Still has significant domain shift despite cross domain pre-training ...

[1] Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science (2006).



What about supervised CNNs?

* CNNs trained on large amounts of data yield
state of the art performance on classification

tasks; c.f. AlexNet:

1
r’/’ x‘s
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24\ sirige Max 128 Max pooling
of 4 pooling pooling

2048 2048

* Does using a representation learned on large
amounts of data remove domain shift?



“DeCAF” baselines

Amazon — Webcam

SURF DeCAF;  DeCAF-
Logistic Reg. (§) 063+14 4858+13 5356£15
SVM (§) 110523 5222+£1.7 53.90+£22

Logistic Reg. (T) 2433 +£121
SVM (T) 5105+ 2.0

Logistic Reg. (5T) 1989 £ 1.7
SVM (ST) 23.19£35

7256+ 2.1
TR26+ 2.6

75.30 £ 2.0
80.66 + 2.

7419+ 2.8
78.72+23

76.32 + 2.0
19.12+2.1

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell. DeCAF: A Deep Convolutional Activation Feature for

Generic Visual Recognition. ICML 2014



monitors grouped

together
...kind of!

T-SNE embedding of FC8 representati
Blue = Amazon Gl
Green = Webcam

...but not completely.

ackpacks are

— separated



Solving domain shift?

CNNs already remove a lot of
the domain shift in the Office
dataset [1]

* But, can we get even more
juice out of our network by
tweaking it for the target
domain?

 And, what if we just use a
really big source domain?



Adaptation of Supervised Deep ConvNets
with Limited Training Data

* Fully training a CNN takes a long time

e |t would be nice to be able to reuse a trained model
on a different task

* Typical solution: fine-tune!
— But this only works when there is a lot of training data

* Hoffman et al. [arXiv 2013 / ICLR Workshop 2014]

— We provide the first analysis of standard domain
adaptation techniques with CNNs to handle the case where
target domain training data is severely limited

— We also provide the first investigation of domain
adaptation using a large-scale source domain (ImageNet!)



Network Adaptation Framework
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[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014]




Adaptation Methods

* Three proposed

methods of
adaptation:
— Deep and Frustratingly

Easy (DFE) _ c ,: """ ” : _
— Deep Late Fusion (DLF) :; = " :
— Deep Subspace ;WMMJ ................... e ”ws

Alignment (DSA) ma,,zm, ﬁ h

* Each has its own
advantages and

d 1Sa dva ntageS... [ Hoffman et al. arXiv 2013 / ICLR Workshop 2014]



Deep and Frustratingly Easy (DFE)

Supervised adaptation technique introduced by
Daumé Il

Augment feature space by introducing three
components: source-specific, target-specific, and
common

— e.g. Source data has the original feature vector replicated
in the source-specific and common components and zeros
in the target-specific component

Then train a classifier on the augmented features
Usually yields good performance
...But requires all source and target data at train time

[2] H. Daumé lll. Frustratingly easy domain adaptation. In ACL, 2007.



Deep Late Fusion (DLF)

Train classifiers for source
and target domains

separately i

Final classifier score is a . F Soubgcoy ot

linear interpolation of the gm""”rg?“’”"’“'”""

two separate source/target 3% ... 4]
classifier scores o

Source classifier can be 5o [

trained in advance and saved g

...But the linear interpolation
coefficient must be set

— (0.8 works pretty well in practice)



Deep Subspace Alignment (DSA)

* Unsupervised adaptation

 Compute source and target o
subspaces, and find an alignment L
between them

P T
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— Train a classifier on the source
data

— At test time, project target data
into source subspace and use
source classifier
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* Requires no labels, source | amaonSoue

subspace can be computed in R R R
Subspace Dimensionality
advance

[3] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain
adaptation using subspace alignment. In Proc. ICCV, 2013.



Supervised setting results

A=D A=W D— A D—=Ww W—=4A W=D | Average

GFK(PLS.PCA) [13] : 464405 i 613404 : 663 +04 | 530
SA[11] : 450 : 648 : 69.9 50.9
DLID [6) : 519 : 782 : 89.9 733
DA-NBNN [23] : 528 +£37 i 766+ 1.7 : 162425 | 685

Ours-sourceonly  50.2+0.6 45605 453+03 865103 442403 8R0x04]| 734
Ours - target only 775405 76005 558+05 T6.0£05 55.8+05 75105 765
Ours - DFE 785405 774404 584405 852+03 59.1+£04 87.0+04| 832
Ours - DLF 60.3+0.8 66807 566704 864104 563106 87.1+06] 801

Source: 20 images/category for Webcam and DSLR
8 images/category for Amazon
Target: 3 images/category
[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014]



Unsupervised setting results

A=D A=W D— A D—=W W= A W=D | Average
GFK(PLS,PCA) |13] - 150+ 04 - H6+03 - 497+ 0.5 30.4
SA (L] - 13.3 - 0.1 - 56.9 40.8
DA-NBNN |23] - 233+27 - 672+19 - 674 +3.0 52.6
DLID 6] - 26.1 - 68.9 - 84.9 60.0
Ours-sourceonly  50.2+0.6 456+05 453+03 865103 442103 88.0+0.4| 734
Ours - DSA 50.1+04 46.6+0.7 455+04 862103 43.0+04 R6.7205 | 732

Source: 20 images/category for Webcam and DSLR
8 images/category for Amazon

[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014]



Large-scale Source Domains

 What happens if we try
using a much bigger
source dataset instead?

* Intuitively: a sufficiently
large dataset should
contain images like the
target domain too!

i 2 ' u. \I
Webcam/DSLR

[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014]



Using ImageNet as Source

Adaptation Source Domain
Adaptation Source Domain Method ImageNet ~ Amazon
Method [magenet _ Amazon source only 555 0.2 452=x14
source only 55502 452=x14 targetonly 5550 2.7 55.5x 27
DSA 0404 46.1=x2.0 DLF 62812 56.8x2.3

DFE 69.9+1.5 0645+13
(a) Unsupervised Adaptation

(b) Supervised Adaptation (One-Shot Adaptation)

Evaluation on Webcam domain

[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014]



Multiclass Accuracy

When to Adapt?

1001
- = =source only
+targetonly
90_—5_—DFE
80r
70_ ......
60"
50 | | I I | | I I
31 62 93 124 155 186 217 248

Number of Labeled Target Examples

ImageNet to Webcam
[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014]
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Large-scale detection

ImageNet provides huge
amounts of classification
data, so classification
performance is very good
even with a large number
of categories

But there is comparatively
little detection data, since
bounding boxes are hard to
come by.

— How to learn detectors for
thousands of categories?

tabby
tiger cat

Egyptian cat

lynx

cougar

CNN took 0.068 seconds

Maximally accurate

Maximally specific



ldea: adapt classifiers for detection

Classifiers

Vvcmssm&

dog -
L] + +
VVCLASSIN

apple ~

g

Detectors

* #
WCLASSIFY&
cat ~

~ ~

JcLassIFy

[ Hoffman et al. arXiv 2014 / NIPS 2014]



PASCAL VOC Challenge

Dataset: 22k images, 50k objects, 20 classes

Detect: people, horses, sofas, bicycles, pottedplants



2006

Progress on PASCAL VOC

L L
*
* . -
: -
2007 2008 2009 2010 2011 2012 2013

VOC dataset year

¢ Competition
results




Progress on PASCAL VOC

70
60
>0 ¢ Competition
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M Post-
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2006 2007 2008 2009 2010 2011 2012 2013

VOC dataset year



Progress on PASCAL VOC

" R-ONN (this work)
60 = R-CNN R-CNN
[ n
>0 ¢ Competition
: . T
B Post-
a 30
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2006 2007 2008 2009 2010 2011 2012 2013

VOC dataset year



ImageNet LSVR Challenge

— 1000 classes
(vs. 20)

— 1.2 million training image &
(vs. 10k)

— Image classification |
(not detection) bus anywhere?

[Deng et al. CVPR'09]



Multi-layer feature learning

“SuperVision” Convolutional Neural Network (CNN)
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Input < 5 convolutional layers » fully connected

ImageNet Classification with Deep Convolutional Neural Networks.
Krizhevsky, Sutskever, Hinton. NIPS 2012.

cf. LeCun et al. Neural Comp. '89 & Proc. of the IEEE ‘98



Impressive ImageNet results!
1000-way image classification

Top-5 error

Fisher Vectors
(I1SI)

5 SuperVision now: 12%
CNNs

7/ SuperVision
CNNs

metric: classification error rate (lower is better)

But... does it generalize to other datasets and tasks?
Spirited debate at ECCV 2012



Objective

Can the SuperVision CNN detect objects?



Proposed system
R-CNN: “Regions with CNN features”

s = =] warped reg}(_)fl _______________ 5 aeroplane? no.
iy L SA - == ,: :
i = : - % E-D person? yes.
= e I R CNN\ :
_ =5k j Dl ad 4 tvmonitor? no.
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions
[Girshick, Donahue, Darrell,
Malik

to appear in CVPR'14]

“selective search” [van de Sande et al. 2011]



R-CNN results on PASCAL

VOC 2007

VOC 2010

DPM v5 (Girshick et al. 2011)

33.7%

29.6%

UVA sel. search (Uijlings et al.
2012)

35.1%

Regionlets (Wang et al. 2013)

39.7%

metric: mean average precision (higher is better)




R-CNN results on PASCAL

VOC 2007 |VOC 2010

DPM v5 (Girshick et al. 2011)
UVA sel. search (Uijlings et al. o

Regionlets (Wang et al. 2013)

R-CNN + bbox regression 58.5% 53.7%




(a) CIassifiization CNN
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Detection data Labeled :
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(b) Hidden Layer Adaptation
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(c) Output Layer Adaptation
[ Hoffman et al. arXiv 2014 / NIPS 2014]



Classification CNN

Train a classification network
using your favorite
architecture

We begin with Krizhevsky et
al.’s network and train it on
the 1000-way ImageNet
classification task

We then replace the final
layer with a new multinomial
logistic regression layer to
recognize the categories we
are interested in

2247

layers 1;

Train Classification
CNN

Classification data

from categories A and B

[ Hoffman et al. arXiv 2014 / NIPS 2014]



Hidden Layer Adaptation

For the classes with
detection data, we now
train detectors

Begin with weights from
classification network

Add a background class

— Gathered by sampling
selective search windows
with low overlap with
ground truth bounding
boxes

Fine-tune network using
detection data +
background patches

from classification network

== (det] | |ded -
] | fee[ | (feTt

7 fodet ] [
Sl ayers 13 [ B

Detection data Labeled : i
from categoriewBrped region e

;Train adapted H .-
detection CNN = L

[ Hoffman et al. arXiv 2014 / NIPS 2014]



Output Layer Adaptation

e Directly transferring the output
layer for the classes without N
detection data iS 3 bad idea _ ........................ \ ..... O n e.tgw.qr!s ..............
preceding layers have changed! : SHT ?

 Simple idea: compute average BN R

b et |
classification-to-detection change Il
for each class in the set of classes NG am

with detection data B:

Final Combined andh_[{ N | ]
fully adapted CNN

AWyy = de We. fully acapted NN N Neackgroun

1EB

[ Hoffman et al. arXiv 2014 / NIPS 2014]



Output Layer Adaptation

* Intuitively: some classes may
transform differently than others

from classification

........................................... network ...
e Use the “closest” classes to R
determine the transformation I 1 s
— “Close” means small Euclidean U Lae ] e
distance between the L2 normalized B 1
FC7 layer parameters ey L] |
* Letting Ng(j,k) denote the k-th | RilEiad
neareSt nEighbor F?inalCombinedand{; ol
. fully adapted CNN
tO CIaSS J; we have: ....................................................................

el

VJ €A Wj'd = WJP T Z [Wf%g(j,k) B W-]C\}B(jak)'
k

[ Hoffman et al. arXiv 2014 / NIPS 2014]



Results on ILSVRC2013

Detection Output Layer | mAP Tramed  mAP Held-out mAP All
Adaptation Layers Adaptation 100 Categories 100 Categories | 200 Categories

No Adapt (Classification Network) 12.63 10.31 11.90
fChgrnd - 14.93 12.22 13.60
fepgrna.feg - 24.72 13.72 19.20
fChgrnasfer - 2341 14.57 19.00
fChgrnafcn - 18.04 11.74 14.90
fcygrnd.fee.fr - 25.78 14.20 20.00
feygrnd.fee.fer.fop - 26.33 14.42 20.40
fepgrnalayersl-7,fcp - 27.81 15.85 21.83
fepgrnalayersl-Tfcp  Avg NN (k=5) 28.12 1597 22.05
fepgrnaslayersl-Tfcg  Avg NN (k=100) 27.91 15.96 21.94
Oracle: Full Detection Network |~ 29.72 2025 | 2800

Table 1: Ablation study for the pieces of DNN. We consider removing different pieces of our algo-
rithm to determine which pieces are essential. We consider training with the first 100 (alphabetically)
categories of the ILSVRC2013 detection validation set (on vall) and report mean average precision
(mAP) over the 100 trained on and 100 held out categories (on val2). We find the best improvement
1s from fine-tuning all convolutional fully connected layers and using output layer adaptation.

[ Hoffman et al. arXiv 2014 / NIPS 2014]



Results on ILSVRC2013

ILSVRC2013 Detection mAP ILSVRC2013 mAP Relative to Oracle

R-CNN 314

OverFeat
Oracle: Full

UvA-Euvision Detection Net

(Ours) DDA
NEC-MU
(Ours) DDA*
Toronto A
GPU_UCLA
Delta
UIUC-IFP |

(Ours) DNN

Al 200 Categories

£100 Held out Categories
| I

mean average precision (mAP) %

Classification Net

mAP relative to oracle full detection net

e Oracle is our method trained with
all 200 category detection data

[ Hoffman et al. arXiv 2014 / NIPS 2014]



Detailed analysis of error type

before adaptation after adaptation

Held-out Categories Held-out Categories
100 100

80

80

60 60

40 40

20 20

percentage of each type
percentage of each type

%5 50 100 200 400 800 1600 3200 %5 50 100 200 400 800 16003200
total false positives total false positives

Loc: location error Oth: other error BG: confused with background

The adapted network makes fewer Loc and BG errors

[ Hoffman et al. arXiv 2014 / NIPS 2014]



Better localization

Red: classification network before adaptation
Green: adapted

[ Hoffman et al. arXiv 2014 / NIPS 2014]



Failures

lemon (sim): ov=0.00 1-r=-5.00
nail (sim): ov=0.00 1-r=-4.008aptop (sim): ov=0.00 1-r=-3.00



7K class detector!

* Public release of a 7604
category detector trained
using this method

— 200 ILSVRC2013 classes
trained with bounding box

data

— 7404 ImageNet leaf nodes
trained with adaptation

-------

Large Scale Detection through
Adaptation

Download pre-trained 7.5K model:




ECCV 2014 Demo...
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Beyond Binary Domains....

HUY B9 AT HWY 28 ' HWY B9 AT HWY 28 { HJY B3 AT HWY 28 HUY BSUAT HWY 28

: .-l ".r.. S K i =i’ a .;1; - -

S T Tt

- e . * o ‘,.4 . ;
> -

Mav 89 AT Hey 28 I

HUY 89 AT HWY 28 £ HWY B9 AT HWY 28 ‘ HUY 89 AT HWY 28




Traffic Intersection Data

Labeled
PP R

Unlabeled




Automobiles across decades

Unlabeled

Labeled

1990



Unsupervised Adaptation

1950 1960 1970 1980 1990

(Gopalan, ICCV 11), (Gong, CVPR 12),
(Fernando, ICCV 13)



Continuous Unsupervised Adaptation

1950 1960 1970 1980 1990

min 7 F_.F)+ Rf_-pf[E:rP:::' + E'-"I{-I—‘ita P.fﬂt::'
Pl:IIIP:=I..."!:...Ir.'i':

where r(.) is a regularizer that encourages the new subspace Continuous Manifold Based Adaptation for Evolving Visual Domains

learned at time ¢ to be close to the previous subspace of time [CVPR 2014]
t—1. Judy Hoffman Trevor Darrell Kate Saenko
UC Berkeley, EECS UC Berkeley, EECS UMass Lowell, CS

Shoffmanfeecs . berkelev. edn trevoarlieecs. berkelev.edu zaenkofos . uml .edu



Adaptation  Classifier ~ GIST| 0]
KNN  71.24£57

SVM  8040+0.6

CMA+GFK  KNN  77.21+£38
CMA+GFK  SVM  B4.17£1.5
CMA+SA  KNN 7861433

CMA+SA  SVM 8432414

Table 2. Our method, CMA, continues to provide improvement for
the scene classification task even when testing over the 5 days fol-
lowing the labeled training data. We show here average precision
(%) for the 2400 test images following the 50 available labeled

training images.

Adaptation Method ~ Classifir ~ GIST[¢]  SIFT-SPM[1]  GIST[2o]+ BSub{ "] - SIFT-SPM[ '+ }+BSud[ 7]

KNN 7630£30 4751451 NME=E 3991430
SVM - 7442430 68.69£36 5098236 89130
(MA+GFK - KNN 780718 4984435 529127 39.08£2.6
(MA{GRK  SVM 7838231 7498227 9.55£29 4155218
CMA+$A KN T87I2LT 3408162 313341 3821126
CMA+SA SV TR40ENL T5.66£29 39.68£29 £.05£28

Teble 1. Our method, CMA, improves performance independent of the feature choice for the scene classification task. Results here ax
shown with oplimizing the unsupervised adzplation problem using ither the peodesic flow kemel (GFK)["] o the subspace alignment
(SA) method []. Average precision (%) is recorded when training with 30 Tabeled images and festing on the immediately following 24

hours (480 images).

NV PR TN, 20 £ Y 89 AT WY 20 | £
w‘-- "

m m e
, : : ' , " 0 e '
@ o y - % > .
- - - z
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r .

o

Figure 4. Sample human labeled images used for intersection traf-
fic classification. Positive examples are shown in the top row
(blue) and negative examples are shown in the bottom row (red).



Adaptation  Classifier  SIFT-SPM[1%]  GIST[20]  DeCAF[7]

KNN 663106  T277x08 84.60+07

SVM 7926£06  7640+0.7 859204
CMA+GFK  KNN 6632+ 02  7260£09 82.65+05
CMA+GFK  SVM 80.24+07 783206 89.68=0.1
CMA+SA KNN 65.06+ 1.1  71.44x13 819706
CMA+SA SVM 7979+06 783107 89.71+0.1

Table 3. Our algorithm improves performance on category recog-
nition task. We evaluate our continuous manifold adaptation ap-
proach (CMA) on the task of labeling images of automobiles as
either cars or trucks. We show results using two solutions to the
unsupervised adaptation problem (GFK["] and SA[ ') and two in-
ner product based source classifiers (KNN and SVM). We compare
across three types of features and demonstrate the benefit of us-
ing our algorithm for each feature choice, including a deep learn-
ing based feature that was tuned for object classification on all of
ImageNet] .

Figure 7. Our method clearly adapts to vehicle appearance as it
evolves to look different from that in the labeled 50’s training
data. We show example images misclassified by non-adaptive
SVM (DeCAF features) and correctly classified by CMA followed
by the same SVM classifier. The 5 sedans and 3 trucks for which
the SVM had the highest confidence (though incorrect) are dis-
played here.



Conclusions

 What does deep learning offer domain
adaptation and vice-versa?

* Detection is a profitable “domain”

* Generalization beyond the two-domain setting
IS iImportant
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