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Practical image classification 

Images at test 
time differ from 
the images used 

to learn the 
model! 



The Adaptation Problem 

Webcam/DSLR 

• Images from different visual 
domains have different 
appearances 

• These differences are what we 
refer to as “domain shift” 

• Given an abundance of data in a 
source domain (e.g. Amazon), how 
can we perform a task in a new 
target domain with very little 
training  data (e.g. Webcam)? 
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Background: Joint feature and 
Parameter Adaptation 
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Conventional Performance is 
limited by visual features 
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First attempt: unsupervised deep 

learning for DA? 

• Let’s try a simple idea in the spirit of [1] 
1) Pre-train unsupervised on both domains to model the data  

2) Then, supervised backprop on the source domain to learn the labels 

• But, the pre-training doesn’t seem to help: 
Worse performance for MNIST->SVHN 

Negligibly improved performance for SVHN->MNIST     MNIST 

 
Street 
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[1] Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science (2006). 

Still has significant domain shift despite cross domain pre-training … 



What about supervised CNNs? 

• CNNs trained on large amounts of data yield 
state of the art performance on classification 
tasks; c.f. AlexNet:  

 

 

 

 

• Does using a representation learned on large 
amounts of data remove domain shift? 



“DeCAF” baselines 

 

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and 
      T. Darrell. DeCAF: A Deep Convolutional Activation Feature for 
      Generic Visual Recognition. ICML 2014 
 



…kind of! 

monitors grouped 
together 

backpacks are 
separated 

…but not completely. T-SNE embedding of FC8 representations 
 Blue = Amazon 
 Green = Webcam 



Solving domain shift? 

CNNs already remove a lot of 
the domain shift in the Office 
dataset [1] 

• But, can we get even more 
juice out of our network by 
tweaking it for the target 
domain? 

• And, what if we just use a 
really big source domain? 

 



Adaptation of Supervised Deep ConvNets 
with Limited Training Data 

• Fully training a CNN takes a long time 

• It would be nice to be able to reuse a trained model 
on a different task 

• Typical solution: fine-tune! 

– But this only works when there is a lot of training data 

• Hoffman et al. [arXiv 2013 / ICLR Workshop 2014] 

– We provide the first analysis of standard domain 
adaptation techniques with CNNs to handle the case where 
target domain training data is severely limited 

– We also provide the first investigation of domain 
adaptation using a large-scale source domain (ImageNet!) 



Network Adaptation Framework 

[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014] 



Adaptation Methods 

• Three proposed 
methods of 
adaptation: 

– Deep and Frustratingly 
Easy (DFE) 

– Deep Late Fusion (DLF) 

– Deep Subspace 
Alignment (DSA) 

• Each has its own 
advantages and 
disadvantages… [ Hoffman et al. arXiv 2013 / ICLR Workshop 2014] 



Deep and Frustratingly Easy (DFE) 

• Supervised adaptation technique introduced by 
Daumé III 

• Augment feature space by introducing three 
components: source-specific, target-specific, and 
common 

– e.g. Source data has the original feature vector replicated 
in the source-specific and common components and zeros 
in the target-specific component 

• Then train a classifier on the augmented features 

• Usually yields good performance 

• …But requires all source and target data at train time 

 [2] H. Daumé III. Frustratingly easy domain adaptation. In ACL, 2007. 
 



Deep Late Fusion (DLF) 

• Train classifiers for source 
and target domains 
separately 

• Final classifier score is a 
linear interpolation of the 
two separate source/target 
classifier scores 

• Source classifier can be 
trained in advance and saved 

• …But the linear interpolation 
coefficient must be set 
– (0.8 works pretty well in practice) 



Deep Subspace Alignment (DSA) 
• Unsupervised adaptation 

• Compute source and target 
subspaces, and find an alignment 
between them 

– Train a classifier on the source 
data 

– At test time, project target data 
into source subspace and use 
source classifier 

• Requires no labels, source 
subspace can be computed in 
advance 

[3] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain 
adaptation using subspace alignment. In Proc. ICCV, 2013. 



Supervised setting results 

Source: 20 images/category for Webcam and DSLR 
               8 images/category for Amazon 
Target: 3 images/category 

[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014] 



Unsupervised setting results 

Source: 20 images/category for Webcam and DSLR 
               8 images/category for Amazon 

[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014] 



Large-scale Source Domains 

Webcam/DSLR 

• What happens if we try 
using a much bigger 
source dataset instead? 

• Intuitively: a sufficiently 
large dataset should 
contain images like the 
target domain too! 

[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014] 



Using ImageNet as Source 

Evaluation on Webcam domain 

[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014] 



When to Adapt? 

ImageNet to Webcam 
[ Hoffman et al. arXiv 2013 / ICLR Workshop 2014] 
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Large-scale detection 

• ImageNet provides huge 
amounts of classification 
data, so classification 
performance is very good 
even with a large number 
of categories 

• But there is comparatively 
little detection data, since 
bounding boxes are hard to 
come by. 
– How to learn detectors for 

thousands of categories? 
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? 

Idea: adapt classifiers for detection 

[ Hoffman et al. arXiv 2014 / NIPS 2014] 



PASCAL VOC Challenge 
Dataset:   22k images,   50k objects,   20 classes 

Detect: people, horses, sofas, bicycles, pottedplants, ... 



Progress on PASCAL VOC 
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SegDPM 

[Fidler et al. 2013] 

R-CNN R-CNN 
R-CNN (this work) 

DPM, 

HOG+BOW 



ImageNet LSVR Challenge 

– 1000 classes   

         (vs. 20) 

 

– 1.2 million training images   

         (vs. 10k) 

 

– Image classification 

         (not detection) bus anywhere? 

[Deng et al. CVPR’09] 



Multi-layer feature learning 
“SuperVision” Convolutional Neural Network (CNN) 

ImageNet Classification with Deep Convolutional Neural Networks. 

Krizhevsky, Sutskever, Hinton.  NIPS 2012. 

 

cf.   LeCun et al. Neural Comp. ’89 & Proc. of the IEEE ‘98 

input 5 convolutional layers fully connected 



Impressive ImageNet results! 

But... does it generalize to other datasets and tasks? 
Spirited debate at ECCV 2012 

1000-way image classification 

metric: classification error rate  (lower is better) 

Top-5 error 

Fisher Vectors 

(ISI) 
26.2% 

5 SuperVision 

CNNs 
16.4% 

7 SuperVision 

CNNs 
15.3% 

now: 12% 



Objective 

Can the SuperVision CNN detect objects? 



Proposed system 
R-CNN: “Regions with CNN features” 

“selective search” [van de Sande et al. 2011] 

[Girshick, Donahue, Darrell, 

Malik 

to appear in CVPR’14] 



R-CNN results on PASCAL 

metric: mean average precision (higher is better) 

VOC 2007 VOC 2010 

DPM v5 (Girshick et al. 2011) 33.7% 29.6% 

UVA sel. search (Uijlings et al. 

2012) 
35.1% 

Regionlets (Wang et al. 2013) 41.7% 39.7% 

R-CNN 54.2% 50.2% 

R-CNN + bbox regression 58.5% 53.7% 
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R-CNN results on PASCAL 
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(b) Hidden Layer Adaptation 
[ Hoffman et al. arXiv 2014 / NIPS 2014] 



Classification CNN 

• Train a classification network 
using your favorite 
architecture 

• We begin with Krizhevsky et 
al.’s network and train it on 
the 1000-way ImageNet 
classification task 

• We then replace the final 
layer with a new multinomial 
logistic regression layer to 
recognize the categories we 
are interested in 
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dog: 0.85 

airplane: 
0.05 

person: 
0.10 

layers 1-5 

fc6 fc7 
fcA 

fcB 

Classification data  
from categories A and B 

Train Classification  
CNN 

[ Hoffman et al. arXiv 2014 / NIPS 2014] 



Hidden Layer Adaptation 

• For the classes with 
detection data, we now 
train detectors 

• Begin with weights from 
classification network 

• Add a background class 
– Gathered by sampling 

selective search windows 
with low overlap with 
ground truth bounding 
boxes 

• Fine-tune network using 
detection data + 
background patches 
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[ Hoffman et al. arXiv 2014 / NIPS 2014] 



Output Layer Adaptation 

• Directly transferring the output 
layer for the classes without 
detection data is a bad idea – 
preceding layers have changed! 

• Simple idea: compute average 
classification-to-detection change 
for each class in the set of classes 
with detection data B: 
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[ Hoffman et al. arXiv 2014 / NIPS 2014] 



Output Layer Adaptation 

• Intuitively: some classes may 
transform differently than others 

• Use the “closest” classes to 
determine the transformation 
– “Close” means small Euclidean 

distance between the L2 normalized 
FC7 layer parameters 

• Letting NB(j,k) denote the k-th 
nearest neighbor 
to class j, we have: 
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[ Hoffman et al. arXiv 2014 / NIPS 2014] 



Results on ILSVRC2013 

[ Hoffman et al. arXiv 2014 / NIPS 2014] 



Results on ILSVRC2013 

• Oracle is our method trained with 
all 200 category detection data 

[ Hoffman et al. arXiv 2014 / NIPS 2014] 



Detailed analysis of error type 

Loc: location error   Oth: other error   BG: confused with background 
 

The adapted network makes fewer Loc and BG errors 

before adaptation after adaptation 

[ Hoffman et al. arXiv 2014 / NIPS 2014] 



Red: classification network before adaptation  
Green: adapted 

Better localization 

[ Hoffman et al. arXiv 2014 / NIPS 2014] 



Failures 



7K class detector! 

• Public release of a 7604 
category detector trained 
using this method 

– 200 ILSVRC2013 classes 
trained with bounding box 
data 

– 7404 ImageNet leaf nodes 
trained with adaptation 

 

http://lsda.berkeleyvision.org/ 



ECCV 2014 Demo… 
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Beyond Binary Domains…. 



Traffic Intersection Data 



Automobiles across decades 



Unsupervised Adaptation 

(Gopalan, ICCV 11), (Gong, CVPR 12), 

(Fernando, ICCV 13) 



Continuous Unsupervised Adaptation 

[CVPR 2014] 



 



 



Conclusions 

• What does deep learning offer domain 
adaptation and vice-versa? 

• Detection is a profitable “domain” 

• Generalization beyond the two-domain setting 
is important 
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