

Motivation

- Learning object detectors requires massive amounts of labeled training data from the source of interest
- \rightarrow Impractical with:
 - many different sources (network of cameras)
 - constantly changing sources (mobile cameras)

Goal – Autonomous self-learning of detectors

Online unsupervised learning of detectors that

- continuously adapt to streaming data sources
- without any labeled data
- without manually set hyperparameters

Overview – Ensemble of Instance Trackers

- Generate seed detections from a confident but laconic oracle
- ii Jointly learn instance-level models using online multi-task learning: **Ensemble of Instance Trackers (EIT)**
- iii Generate a category-level model from instance models
- iv Mine for new training examples

Learning a detector

An object detector (parameterized by w) assigns an image window x represented by a feature vector $\phi(\mathbf{x})$ to a category with the probability:

$$P(\mathbf{x}) = \left(1 + e^{-\left(\mathbf{w}^T \phi(\mathbf{x}) + b\right)}\right)^{-1}$$

 \blacktriangleright Training data: tracking-by-detection of seeds \rightarrow pool of candidate locations: one positive (closest match) + hard negative examples

Self-Learning Camera: Autonomous Adaptation of Object Detectors to Unlabeled Video Streams Adrien Gaidon, Eleonora Vig, Gloria Zen, Jose A. Rodriguez-Serrano

Xerox Research Centre Europe

Multi-task learning of an ensemble of instance trackers

- Ensemble of Instance Trackers (EIT): set of N object-instance detectors in the current frame parameterized by $\mathbf{W} = \{\mathbf{w}_1, \dots, \mathbf{w}_N\}$
- Jointly minimize over the ensemble parameters:

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} L(\mathbf{X}, \mathbf{y}, \mathbf{W})$$

where $L(\mathbf{X}, \mathbf{y}, \mathbf{W}) = \sum_{i=1}^{N} \sum_{k=1}^{n_i} \ell(\mathbf{x}_k^{(i)}, y_k^{(i)}, \mathbf{w}_i)$ is logistic loss and $(\mathbf{x}_{k}^{(i)}, y_{k}^{(i)})$ are training samples of object *i* (n_{i} in total)

Use a multi-task regularization term:

 $\Omega(\mathbf{W}) = \frac{1}{2N} \sum_{i=1}^{N} \|\mathbf{w}_i\|$

where $\bar{\mathbf{w}}$ is the (running) mean of all instance models \blacktriangleright Regularization promotes similarity between instance models \rightarrow avoids overfitting and drifting

▶ New scene-adapted category-level detector $\bar{\mathbf{w}}^* = \mathsf{updated}$ mean

Continuous self-tuning online adaptation

- Averaged Stochastic Gradient Descent (ASGD) is used to solve Eq. (2)
- ▶ Update rule for each model \mathbf{w}_i :

$$\mathbf{w}_{i}^{k} = \mathbf{w}_{i}^{k-1} - \eta \left(\frac{\partial \ell}{\partial \mathbf{w}} (\mathbf{x}_{k}^{(i)}, y_{k}^{(i)}, \mathbf{w}_{i}^{k-1}) + \frac{\lambda}{N} \left(\mathbf{w}_{i}^{k-1} - \bar{\mathbf{w}} \right) \right), \quad (4)$$

with η learning rate and training samples $(\mathbf{x}_k^{\scriptscriptstyle (i)}, y_k^{\scriptscriptstyle (i)})$, $\kappa = 1, \ldots, n_i$

Self-tuning the parameters: greedy search for least-overfitting parameter values that optimize the rank of the closest detection in the current frame

References

- A. Gaidon, G. Zen, J. A. Rodriguez-Serrano, "Self-Learning Camera: Autonomous Adaptation of Object Detectors to Unlabeled Video Streams", arXiv, 2014.
- P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, "Object detection with discriminatively trained part-based models," PAMI, 2010.
- X. Wang, G. Hua, and T. Han, "Detection by detections: Non-parametric detector adaptation for a video.," CVPR, 2012.

(1)

$$) + \lambda \Omega(\mathbf{W}),$$

$$_{i}-ar{\mathbf{w}}\Vert_{2}^{2},$$

(3)

(2)

$$\mathbf{w}_2^{k-1}$$
 \mathbf{w}_2^k
 \mathbf{w}_2^k

$$\mathbf{w}_{3}^{k}$$
 \mathbf{w}_{3}^{k} \mathbf{w}_{3}^{k}

Results

Video object detection datasets:

	frame size	fps $\#$ frames		class	#objects
CAVIAR (Ols1)	576 × 768	25	295	pedestrian	438
CAVIAR (Ols2)	576×768	25	1119	pedestrian	290
CAVIAR (Osow1)	576×768	25	1377	pedestrian	2402
CAVIAR (Olsr2)	576×768	25	560	pedestrian	811
CAVIAR (Ose2)	576×768	25	2725	pedestrian	1737
VIRAT-0401	1080×1920	30	58 <i>K</i>	car	375K
R pacanest	promoti				
			+		
		2			
The second second					
All a standard					
					Ster or

Blackbox oracle: off-the-shelf DPM [2] pretrained on Pascal VOC 2007 Learned detector: Fisher Vectors + approximate sliding window

Quantitative results (Average Precision):

	Ols1	Ols2	Olsr2	Osow1	Ose2	VIRAT-0401
DPM [2]	30.4	52.4	34.9	52.2	34.8	47.0
DbD [3]	32.1	56.3	43.1	47.0	40.9	N.A.
I-EIT	27.4	53.6	40.6	51.9	38.9	53.1
EIT	29.3	58.0	43.7	53.1	38.1	53.7

Qualitative results (demo): use the learned detector for continuously adapted tracking of vehicles in videos acquired by mobile cameras

Conclusions

Continuous category-level learning of object detectors along a data stream Mining of positives and (hard) negatives using spatio-temporal structure Online multi-task learning of a category model from instances Autonomous adaptation over time through self-tuning of hyperparameters