Kernel Methods for Domain Adaptation

Boqing Gong University of Southern California

Joint work with Kristen Grauman and Fei Sha

Vision datasets

Key to computer vision research Instrumental to benchmark different methods

But, datasets are biased

Need undo bias when developing vision systems

Unsupervised domain adaptation (DA)

Setup

Source domain (with labeled data) $D_{\mathcal{S}} = \{(x_m, y_m)\}_{m=1}^{\mathsf{M}} \sim P_{\mathcal{S}}(X, Y)$ Target domain (no labels for training) $D_{\mathcal{T}} = \{(x_n, ?)\}_{n=1}^{\mathsf{N}} \sim P_{\mathcal{T}}(X, Y)$

Unsupervised domain adaptation (DA)

Setup

Source domain (with labeled data) $D_{\mathcal{S}} = \{(x_m, y_m)\}_{m=1}^{\mathsf{M}} \sim P_{\mathcal{S}}(X, Y)$ Target domain (no labels for training) $D_{\mathcal{T}} = \{(x_n, ??)\}_{n=1}^{\mathsf{N}} \sim P_{\mathcal{T}}(X, Y)$

Different distributions

Objective

Learn classifier to work well on target

Unsupervised DA is ill-posed

Image credits: https://www.indiegogo.com/projects/more-than-enough

Unsupervised DA is ill-posed

Make assumptions

- Covariate shift, target shift, sample selection bias, etc.
- Need domain knowledge
 - Exploring intrinsic
 structures in data
 (Subspace, cluster, manifold,
 landmarks, etc.)

Background - quick review

Correcting sampling bias

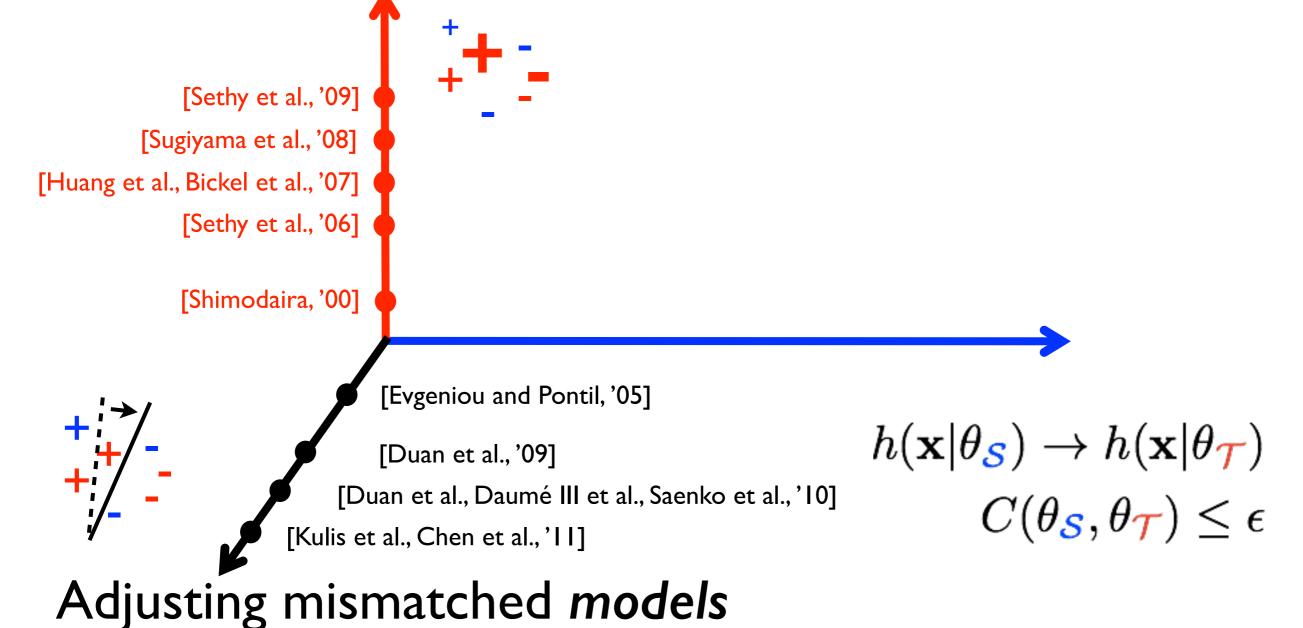
[Sethy et al., '09] [Sugiyama et al., '08] [Huang et al., Bickel et al., '07] [Sethy et al., '06]

[Shimodaira, '00]

Re-weight source instances $\mathbb{E}_{\tau}[h(\mathbf{x}) \neq y] \approx \mathbb{E}_{s} \omega(\mathbf{x}) \ [h(\mathbf{x}) \neq y]$

Background - quick review

Correcting sampling bias



Background - quick review

Correcting sampling bias $\mathbf{x} \mapsto \mathbf{z}, \quad \text{s.t.}$ $P_{\mathcal{S}}(z,y) \approx P_{\mathcal{T}}(z,y)$ [Sethy et al., '09] [Sugiyama et al., '08] [Muandet et al., '13] [Pan et al., '09] [Huang et al., Bickel et al., '07] [Gong et al., '12] [Argyriou et al, '08] Inferring [Sethy et al., '06] [Chen et al., '12] [Daumé III, '07] domain-[Shimodaira, '00] [Gopalan et al., '11] [Blitzer et al., '06] invariant [Evgeniou and Pontil, '05] features

[Duan et al., '09] [Duan et al., Daumé III et al., Saenko et al., '10]

[Kulis et al., Chen et al., 'I I]

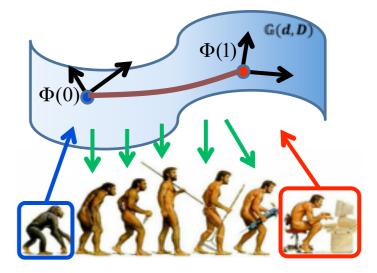
Adjusting mismatched models

Key: to reduce sourcetarget discrepancy

Our solution: kernel methods for

Inferring domain-invariant features

Directly matching distributions



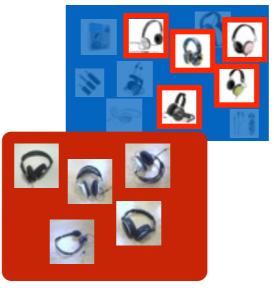
Geodesic flow kernel

Key: to reduce sourcetarget discrepancy

Our solution: kernel methods for

Inferring domain-invariant features

Directly matching distributions

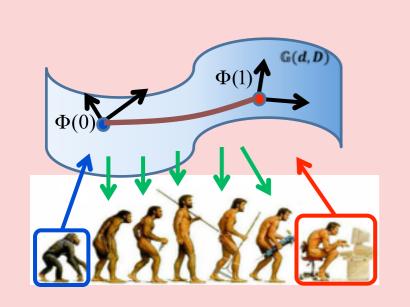


Landmarks

Latent domains

Kernel methods for DA

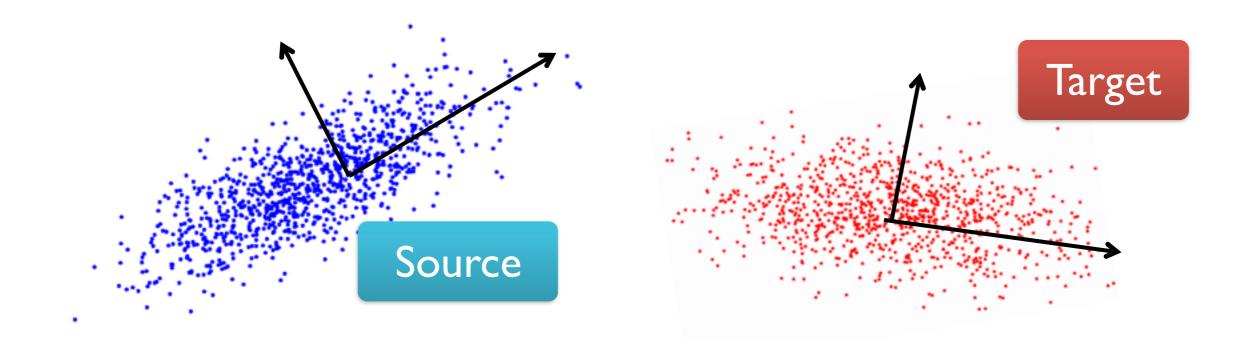
Inferring domain-invariant features



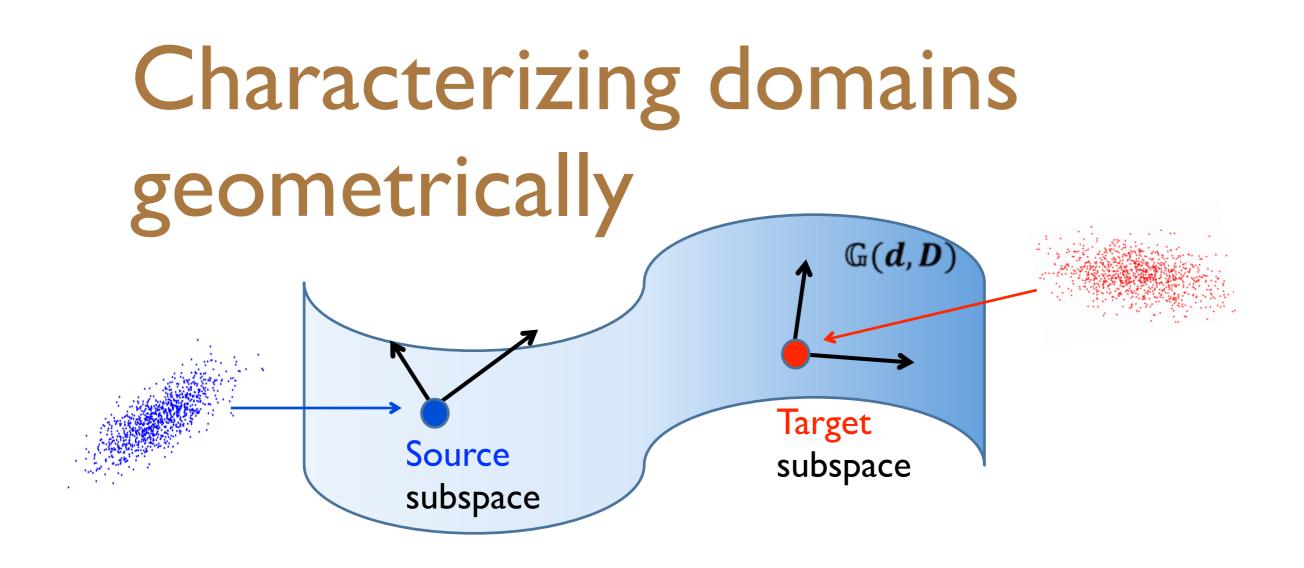
Geodesic flow kernel

Modeling data via subspaces

Assume low-dimensional structure



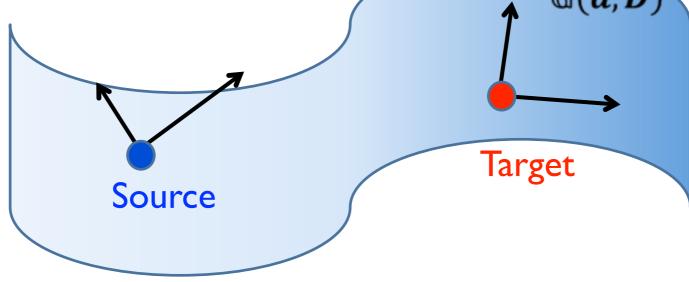
E.g., PCA, LDA, partial least squares



Grassmann manifold G(d, D)

- Collection of d-dim subspaces of a vector space \mathbf{R}^D (d < D)
- Each point corresponds to a subspace

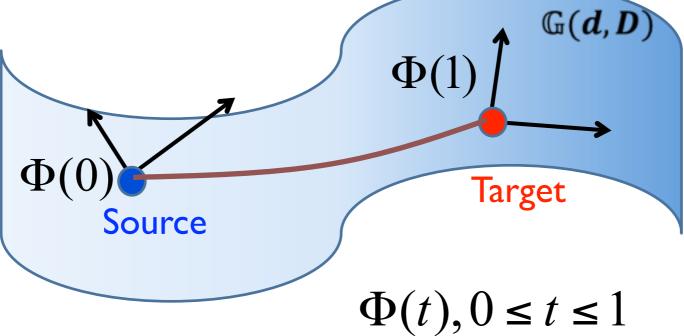
Modeling domain shift with geodesic flow



Geodesic flow on the manifold

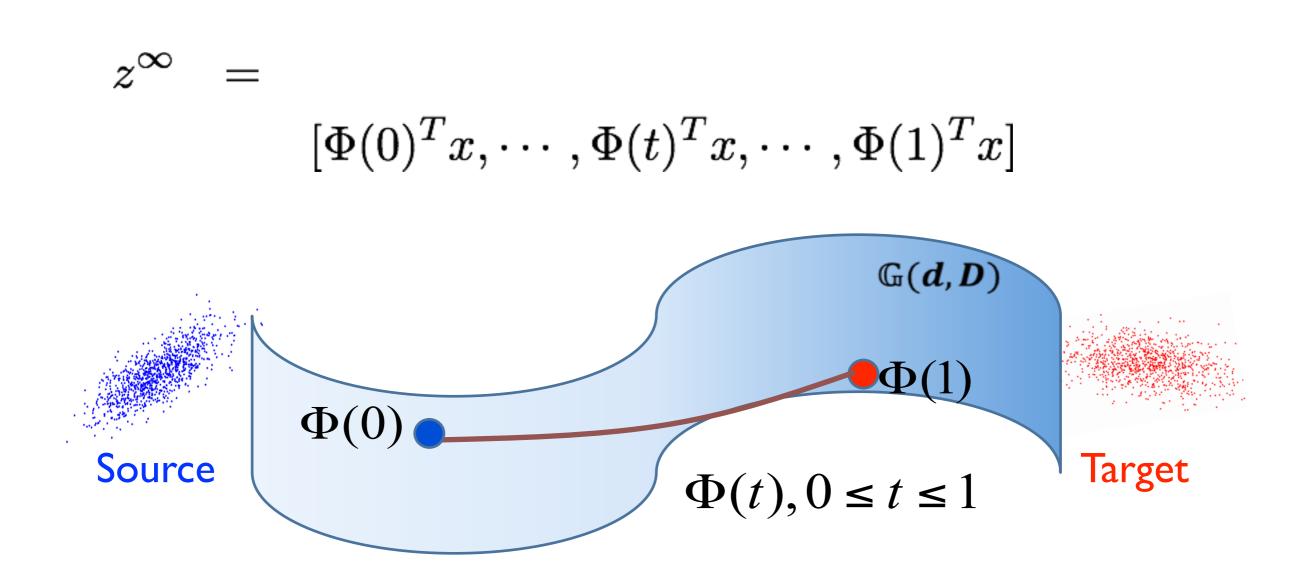
- -starting at source & arriving at target in unit time
- -flow parameterized with one parameter t
- -closed-form, easy to compute with SVD

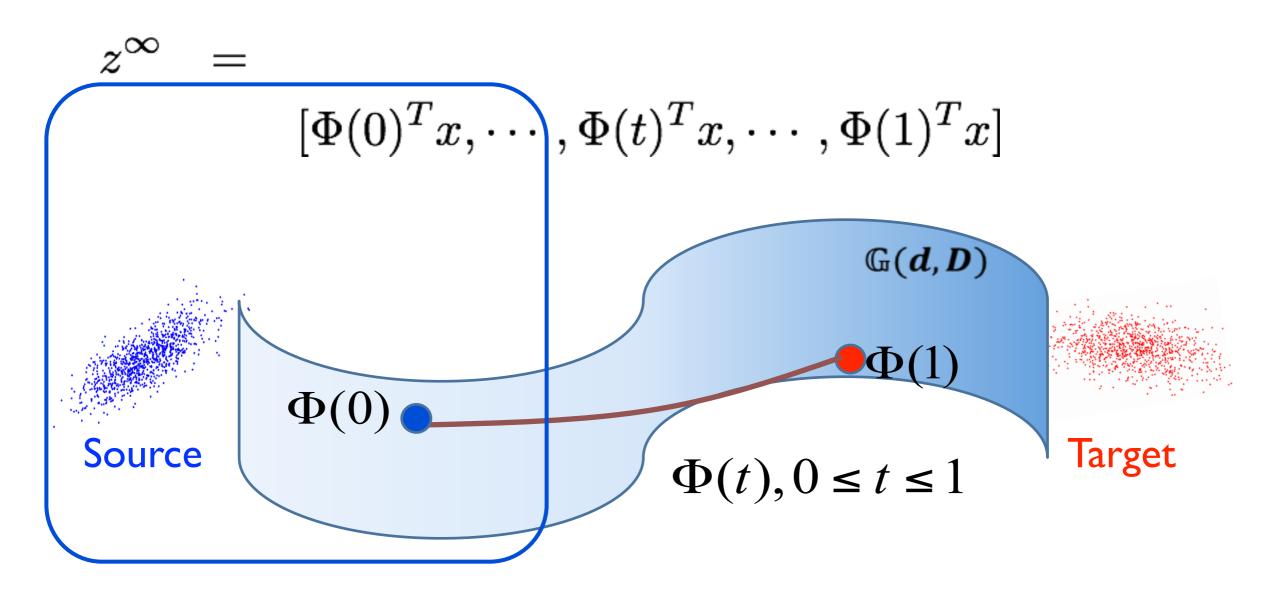
Modeling domain shift with geodesic flow



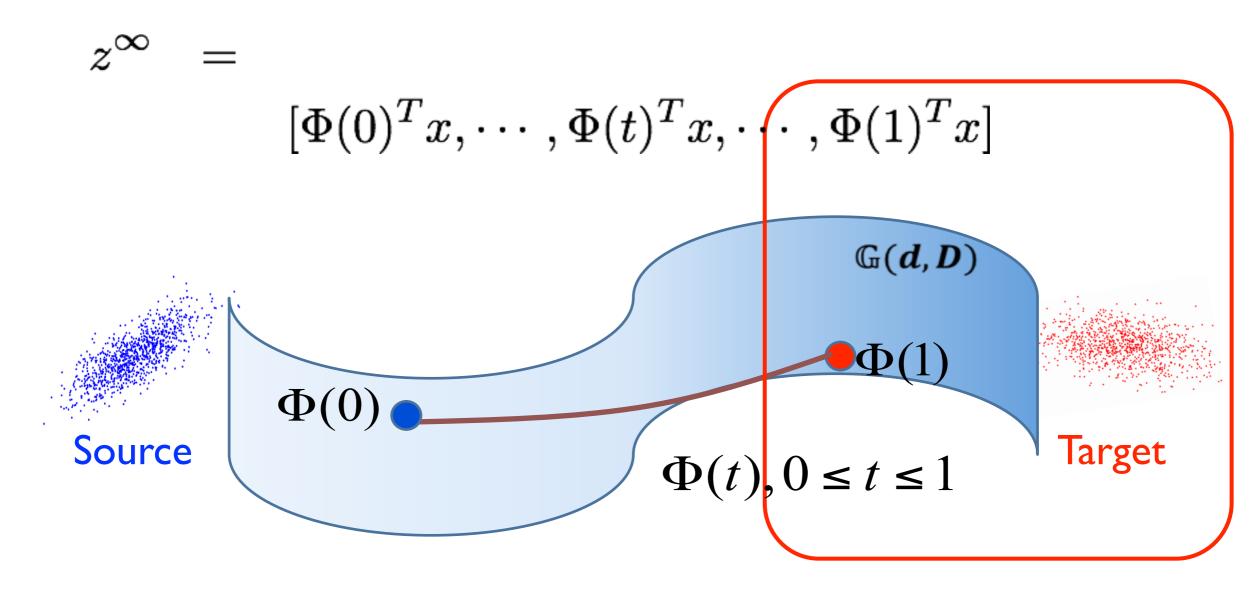
Geodesic flow on the manifold

- -starting at source & arriving at target in unit time
- flow parameterized with one parameter t
- -closed-form, easy to compute with SVD

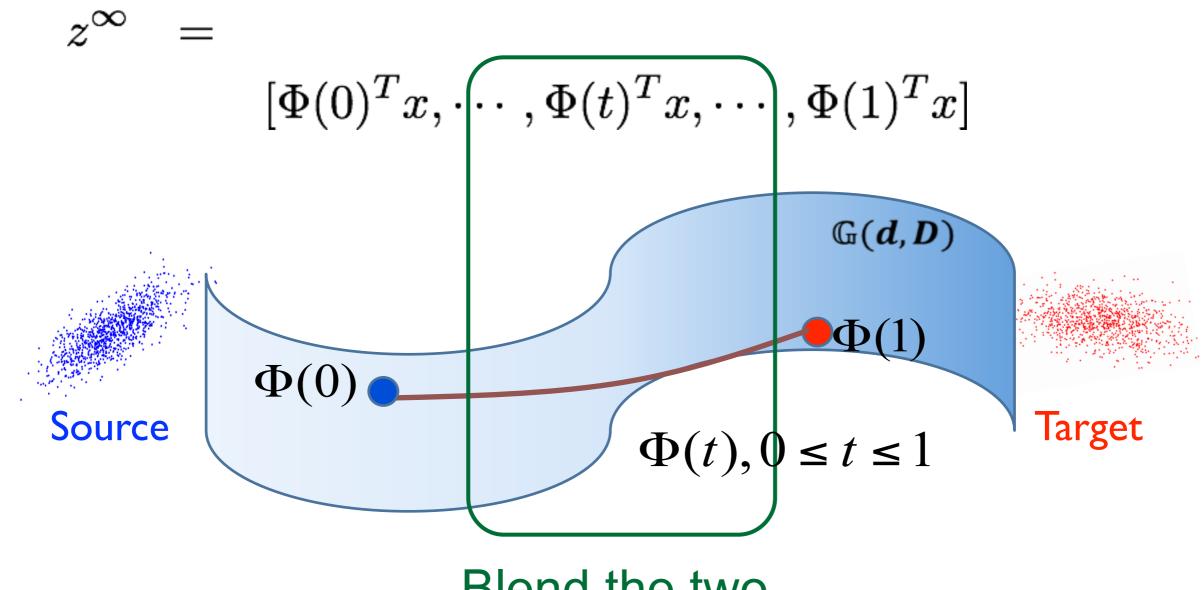




More similar to source.



More similar to target.



Blend the two.

The kernel trick

 $z^{\infty} \to \langle z_i^{\infty}, z_j^{\infty} \rangle$

Avoiding the explicit mapping $z^{\infty} = [\Phi(0)^T x, \cdots, \Phi(t)^T x, \cdots, \Phi(1)^T x]$

Domain-invariant kernel

We define the geodesic flow kernel (GFK):

$$\langle z_i^{\infty}, z_j^{\infty} \rangle = \int_0^1 \left(\Phi(t)^T x_i \right)^T \left(\Phi(t)^T x_j \right) \mathrm{d}t = x_i^T \mathbf{G} x_j$$

Advantages

- -Analytically computable, clean formulation
- -Only one hyperparameter, automatically determined
- -Broadly applicable: can kernelize many classifiers

[Gong et al., CVPR'12]

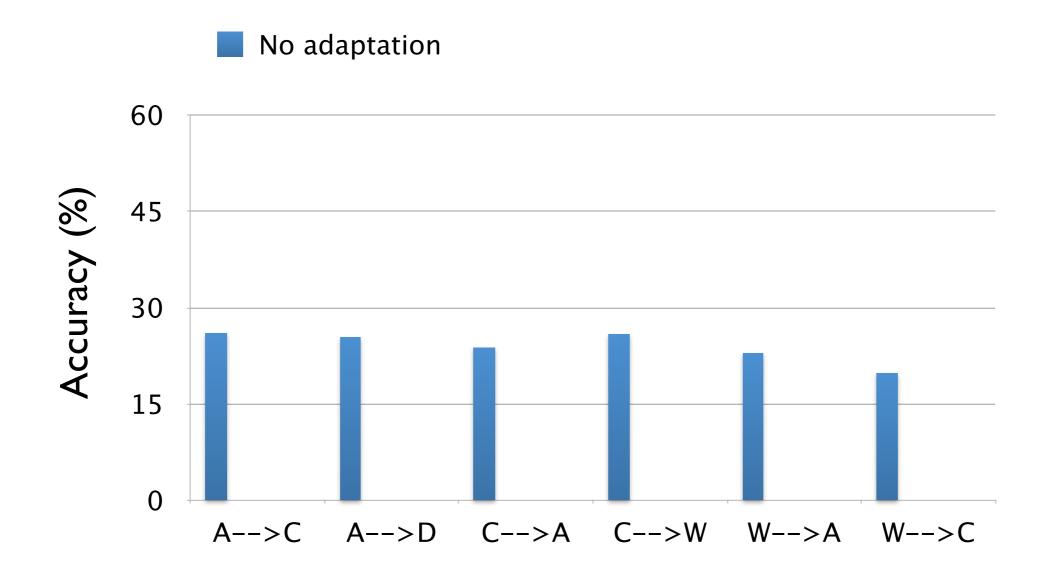
Experimental study

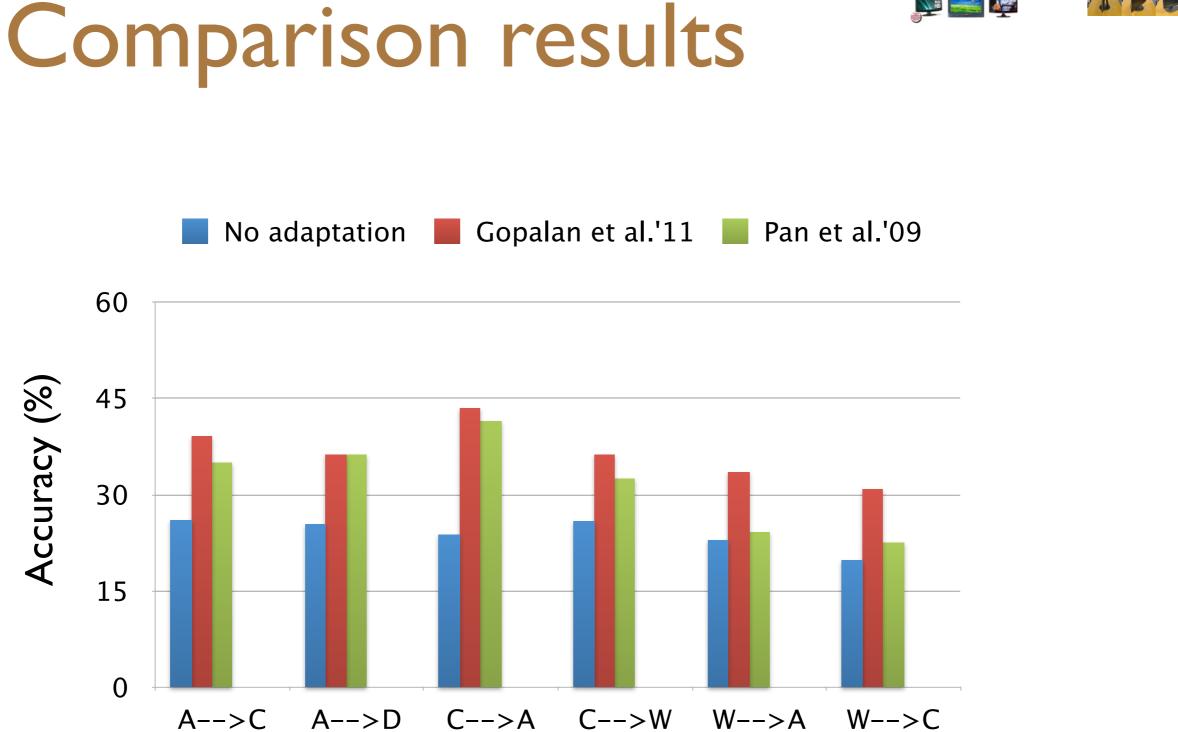
Four vision datasets/domains on visual object recognition

[Griffin et al. '07, Saenko et al. 10']

- 10 common classes
- 10~100 images per class

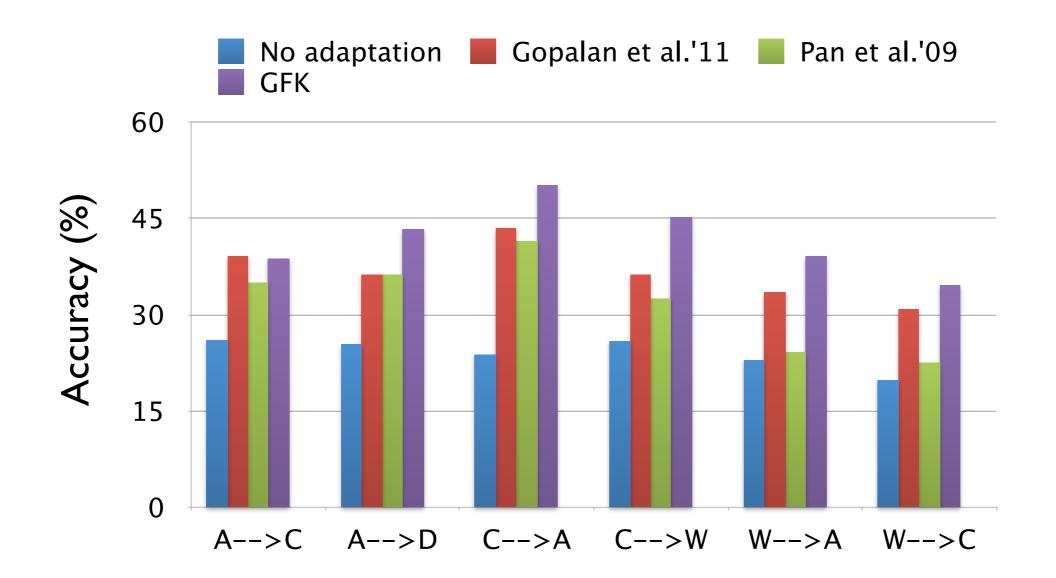
Bag-of-words and SURF features





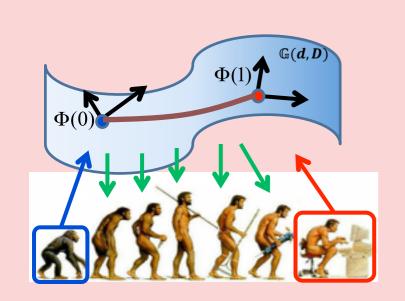


Comparison results



Kernel methods for DA

Inferring domain-invariant features

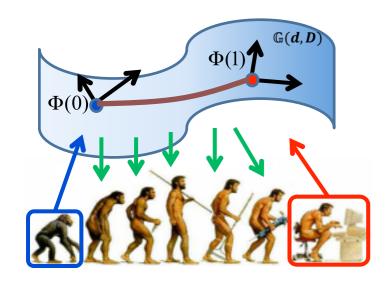


$$\langle z_i^{\infty}, z_j^{\infty} \rangle = \int_0^1 \left(\Phi(t)^T x_i \right)^T \left(\Phi(t)^T x_j \right) \mathrm{d}t = x_i^T \mathbf{G} x_j$$

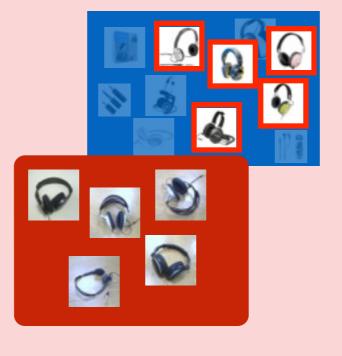
Geodesic flow kernel

Kernel methods for DA

Directly matching distributions



Geodesic flow kernel



Landmarks

Latent domains

& interact

A case study: building vision systems for Amazon images

Not all source instances equally adaptable/useful

Landmarks are labeled source instances distributed similarly to the target domain.

Source

Landmarks are labeled source instances distributed similarly to the target domain.

Source

Landmarks are labeled source instances distributed similarly to the target domain.

Source

Target

 $\begin{array}{ll} \mbox{Identifying landmarks:} \\ P_{\mathcal{L}}(\mbox{landmarks}) \approx P_{\mathcal{T}}(\mbox{target}) \\ & \min & d(P_{\mathcal{L}}, P_{\mathcal{T}}) \\ & \mbox{landmarks} \end{array}$

Landmarks are labeled source instances distributed similarly to the target domain.

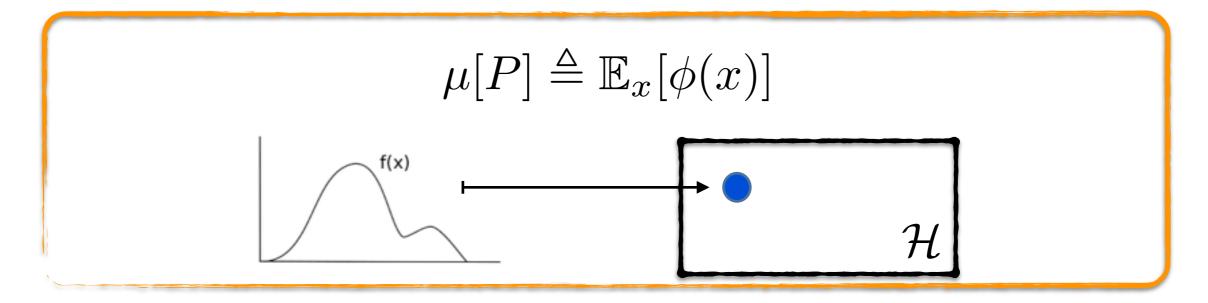
Source

Target

Identifying landmarks:

 $P_{\mathcal{L}}(\text{landmarks}) \approx P_{\mathcal{T}}(\text{target})$ $\min_{\text{landmarks}} d(P_{\mathcal{L}}, P_{\mathcal{T}})$

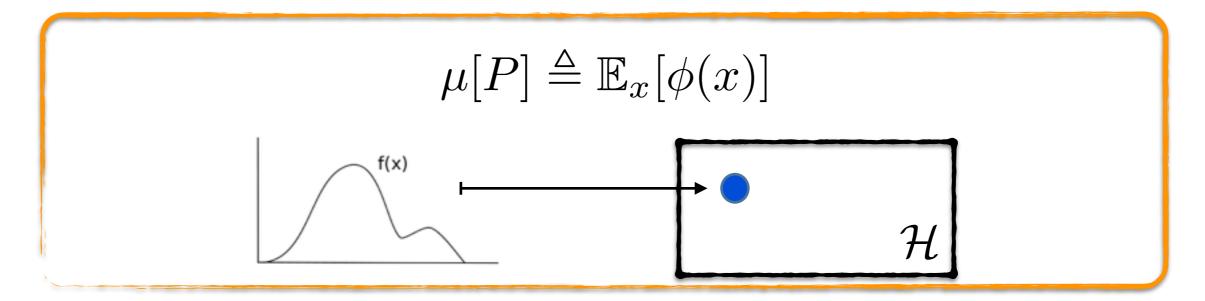
Kernel embedding of distributions



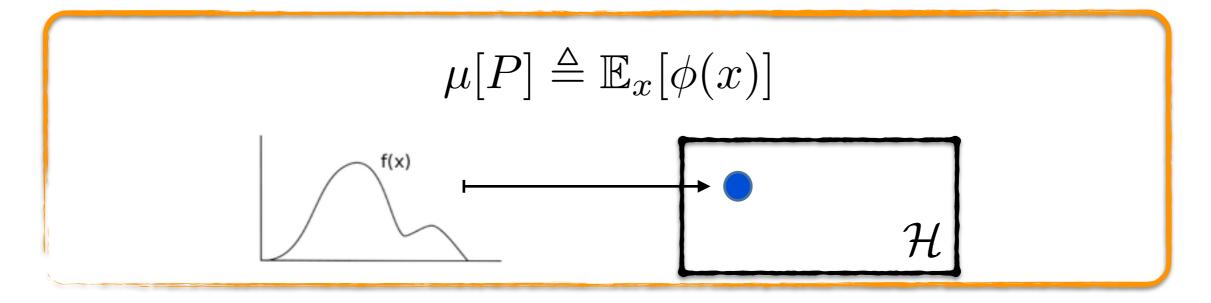
 μ maps distributions to RKHS

RKHS associated with kernel k(,), and $\phi(x)=k(x,\cdot)$

Kernel embedding of distributions

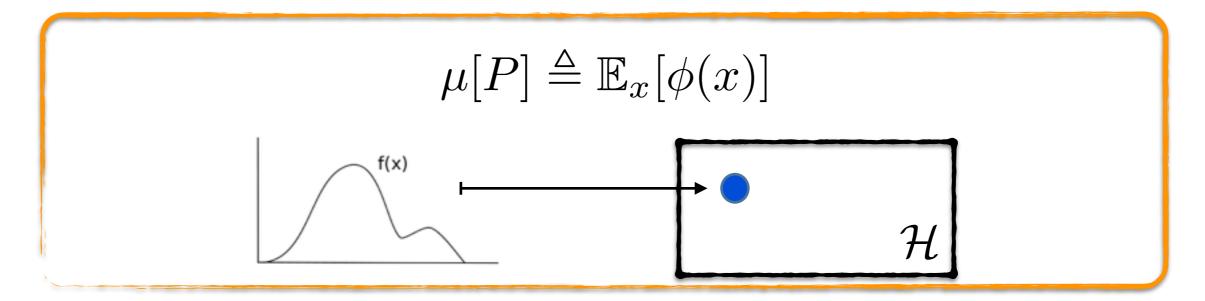


Kernel embedding of distributions

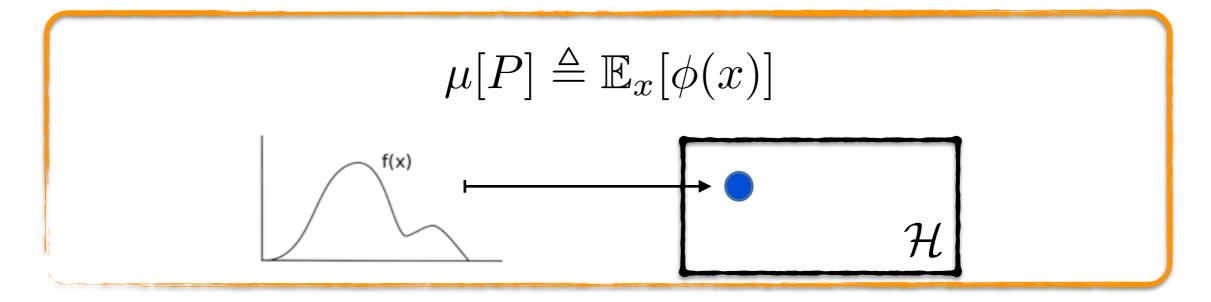


The mapping μ is injective, if k(,) is characteristic $\mu[P]$ preserves all statistical features of P(x)

Kernel embedding of distributions



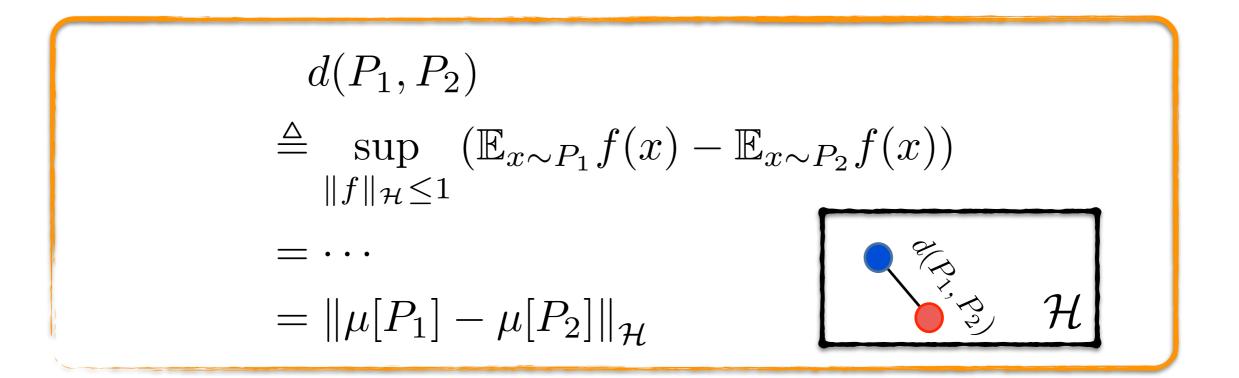
Kernel embedding of distributions



Empirical kernel embedding:

$$\hat{\mu}[P] = \frac{1}{\mathsf{n}} \sum_{i=1}^{\mathsf{n}} \phi(x_i), \quad x_i \sim P$$

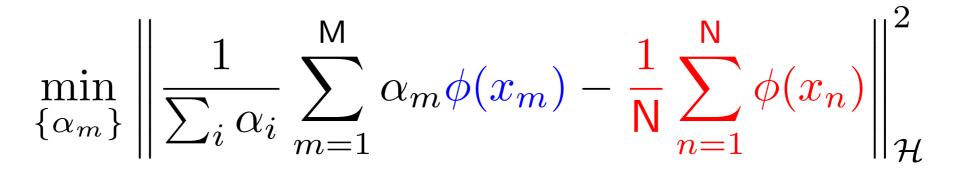
A distance of distributions



d(,) is a metric of distributions, if k(,) is characteristic Maximum mean discrepancy (MMD): the sup() operation

[Müller'97, Gretton et al.'07, Sriperumbudur et al.'10]

Integer programming



where

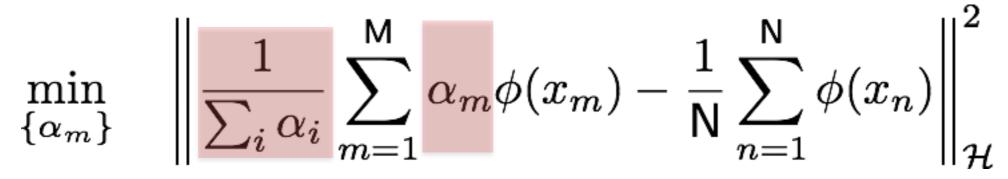
 $\alpha_m = \begin{cases} 1 & \text{if } x_m \text{ is a landmark wrt target} \\ 0 & \text{else} \end{cases}$ $m = 1, 2, \cdots, \mathsf{M}$

[Gong et al., ICML'13]

Convex relaxation

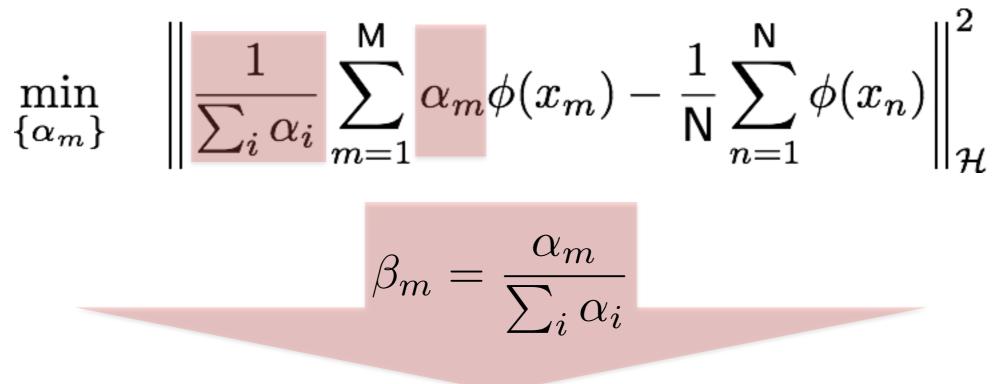
$$\min_{\{\alpha_m\}} \quad \left\| \frac{1}{\sum_i \alpha_i} \sum_{m=1}^{\mathsf{M}} \alpha_m \phi(x_m) - \frac{1}{\mathsf{N}} \sum_{n=1}^{\mathsf{N}} \phi(x_n) \right\|_{\mathcal{H}}^2$$

Convex relaxation



$$\beta_m = \frac{\alpha_m}{\sum_i \alpha_i}$$

Convex relaxation



 $\min_{\beta} \quad \beta^T K^s \beta - \frac{2}{N} \beta^T K^{st} \mathbf{1}$

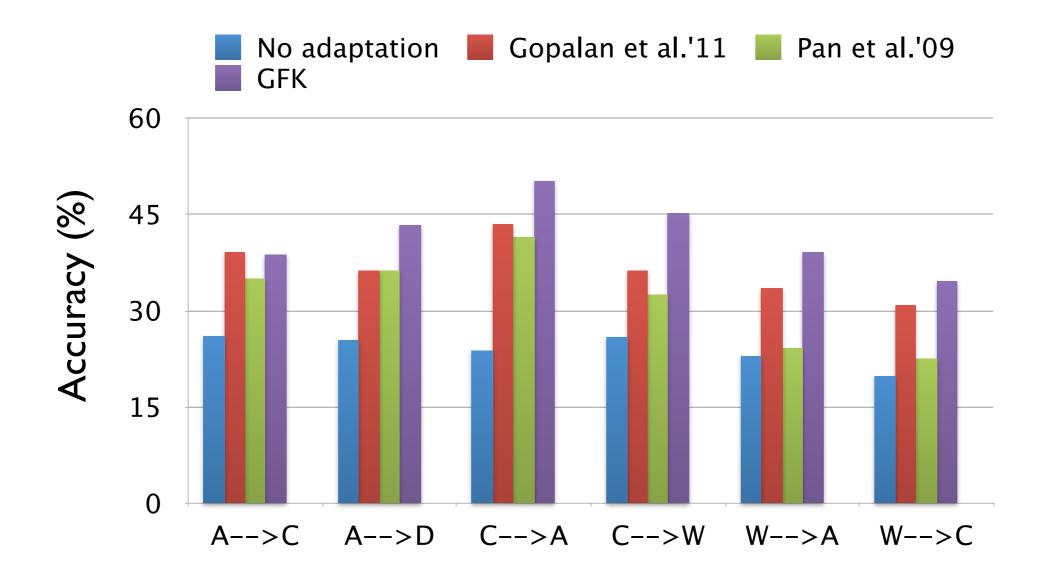
Experimental study (cont'd)

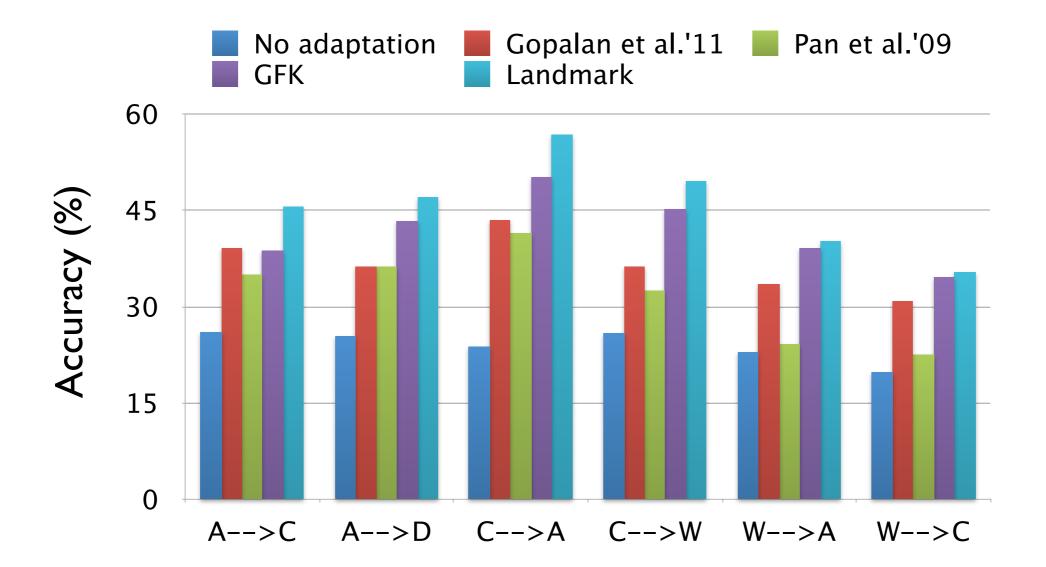
Four vision datasets/domains on visual object recognition

[Griffin et al. '07, Saenko et al. 10']

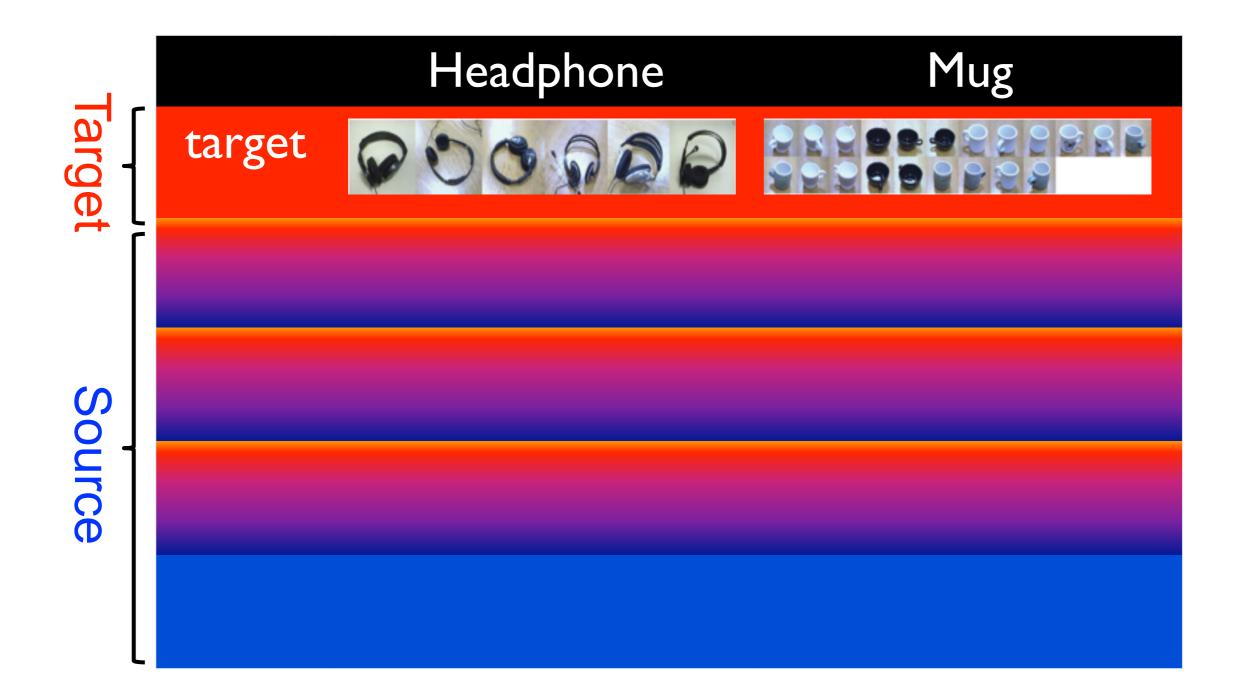
- 10 common classes
- 10~100 images per class

Bag-of-words and SURF features

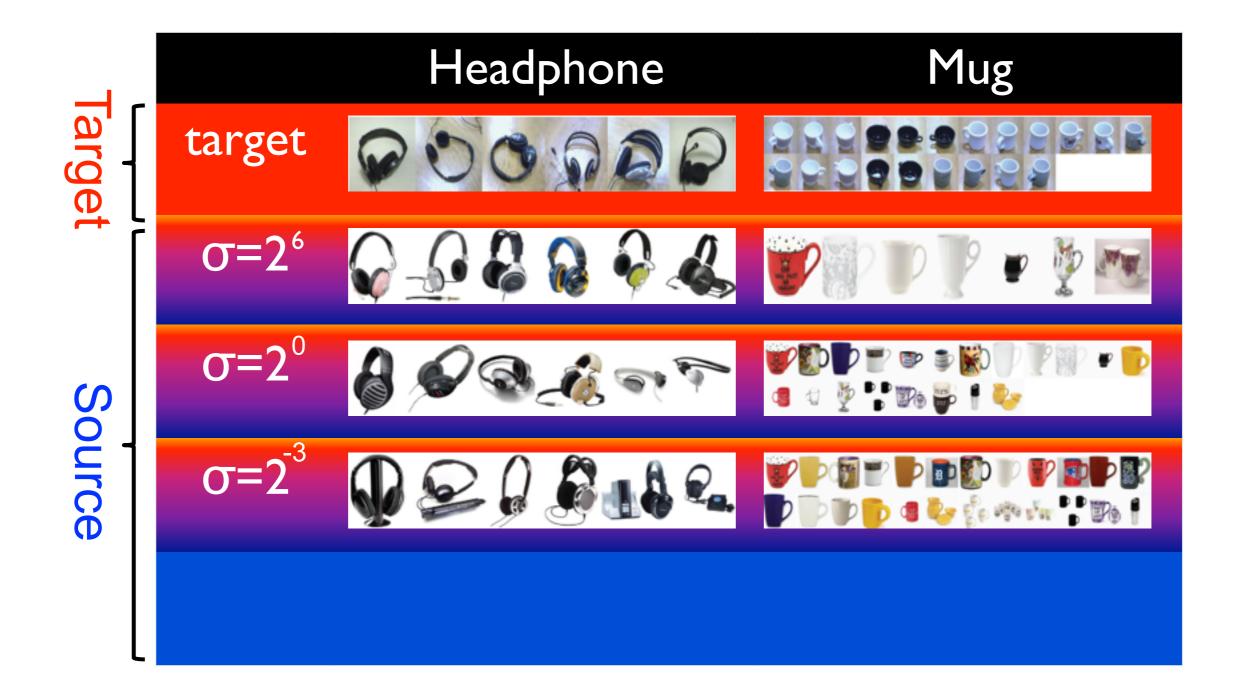




How do landmarks look like?

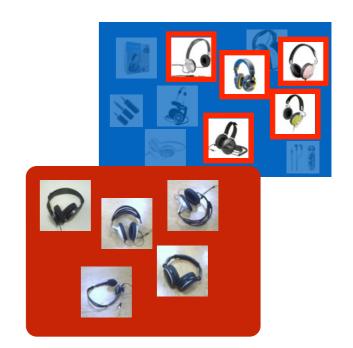


How do landmarks look like?



How do landmarks look like?

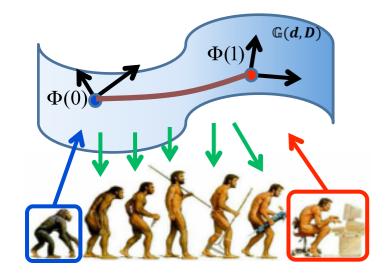
Labeled source instances Distributed similarly to the target



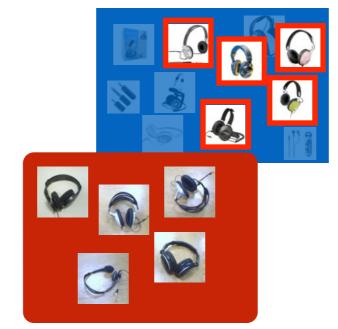
New intrinsic structure shared between domains Proxy of discriminative loss of target Outperformed the state-of-the-arts

Kernel methods for DA

Directly matching distributions



Geodesic flow kernel



Landmarks

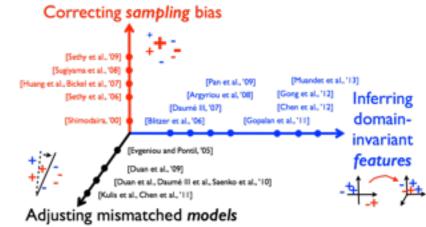
Latent domains

Domains = datasets?

Most DA methods

Assume good-quality domains

Evaluated as cross-dataset adaptation



Domains = datasets?

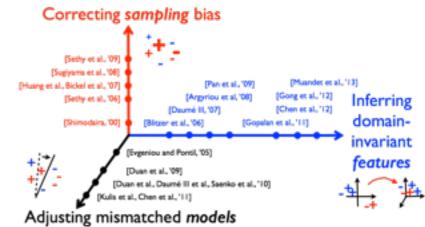
Most DA methods

Assume good-quality domains

Evaluated as cross-dataset adaptation

Common **mistake**: equating datasets with domains

Suboptimal to use DA methods for cross-dataset generalization



In speech and NLP:

Speakers

Languages

Article topics

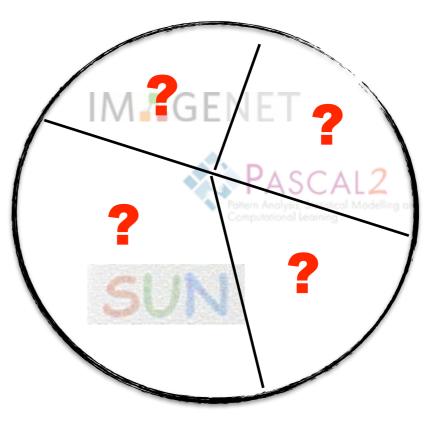
In speech and NLP: In computer vision:

Speakers

Factors?

Languages

Article topics



In speech and NLP: In computer vision:

Speakers

Languages

Article topics

In speech and NLP: In computer vision:

Speakers

Languages

Article topics

In speech and NLP: In computer vision:

Speakers

Languages

Article topics

In speech and NLP: In computer vision:

Speakers

Languages

Article topics

In speech and NLP: In computer vision:

Speakers

Languages

Article topics

... other factors

Many factors overlap & interact

In speech and NLP: In computer vision:

IM BE

?

Speakers

Languages

Article topics

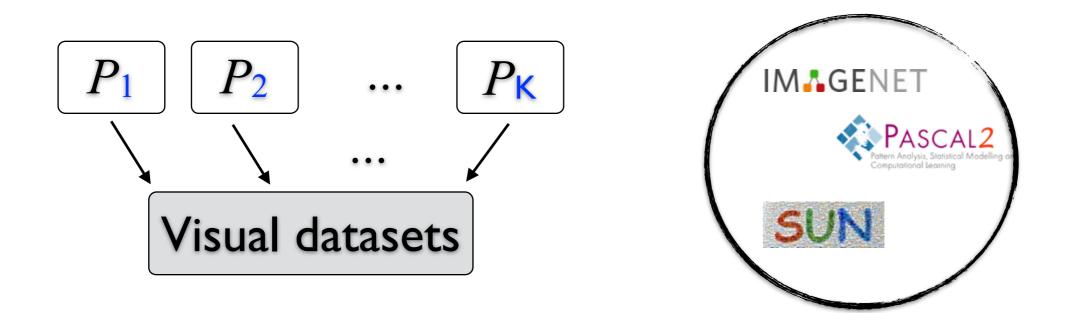
... other factors

Hard to manually enumerate/discretize visual factors

Our solution: working with distributions via kernels

Domains as distributions

Labeled data could be drawn from multiple domains/distributions



Reshaping data to domains before adaptation

Two axiomatic properties

I. Maximum distinctiveness:

Identifying distinct domains maximally different in distribution from each other

II. Maximum learnability

Being able to derive strong discriminative models from the identified domains

L Maximum distinctiveness

Domains maximally different in distribution from each other

PK

 $z_{mk} = \begin{cases} 1 & \text{if } x_m \in \text{the } k\text{-th domain} \\ 0 & \text{else} \end{cases}$ $m = 1, 2, \cdots, M, \quad k = 1, 2, \cdots, K$

[Gong et al., NIPS'13]

II. Maximum learnability

Being able to learn strong classifiers from domains

Within-domain cross-validation

Accuracy(
$$\mathsf{K}$$
) = $\sum_{k=1}^{\mathsf{K}} \frac{\mathsf{M}_k}{\mathsf{M}} \operatorname{Accuracy}_k$

-Determining the number of domains K

[Gong et al., NIPS'13]

Experimental study

Four vision datasets/domains on visual object recognition

[Griffin et al. '07, Saenko et al. 10']

Five views/domains on crossview human action recognition

[Weinland et al.'07]

Comparison results

Sources/datasets	A, C	D, W	C, D, W	View 0, I	View 2,3,4
Targets	D,W	A, C	A	View 2,3,4	View 0, I
From	41.0	32.6	41.8	44.6	47.I

Comparison results

Sources/datasets	A, C	D,W	C, D, W	View 0, I	View 2,3,4
Targets	D,W	A, C	A	View 2,3,4	View 0, I
From	41.0	32.6	41.8	44.6	47.I
From domains	42.6	35.5	44.6	47.3	50.3

Comparison results

Sources/datasets	A , C	D, W	C, D, W	View 0, I	View 2,3,4
Targets	D,W	A, C	A	View 2,3,4	View 0, I
From	41.0	32.6	41.8	44.6	47.1
From domains	42.6	35.5	44.6	47.3	50.3

Cross-domain adaptation

> cross-dataset adaptation

Reshaping test set

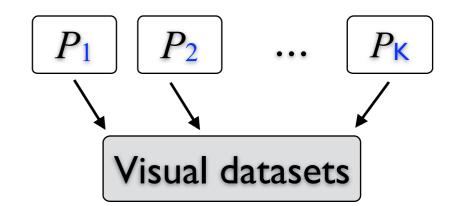
Assigning test data to discovered domains

$$\min_{\{t_{nk}\}} \sum_{k} \hat{d} (\text{DOMAIN}_{k}, \text{TARGET}; \{t_{nk}\})$$

 $t_{nk} = \mathbb{I}(x_n \text{ is assigned to the } k\text{-th domain})$

[Gong et al., NIPS' I 3]

Latent domains



Dataset ≠ domain

Suboptimal to adapt across datasets using DA methods

Cross-domain adaptation > cross-dataset adaptation

Identifying latent domains

Maximum distinctiveness & maximum learnability

A non-parametric kernel method

(unsupervised) Domain adaptation is ill-posed

Potentially successful solutions come with

Appropriate assumptions

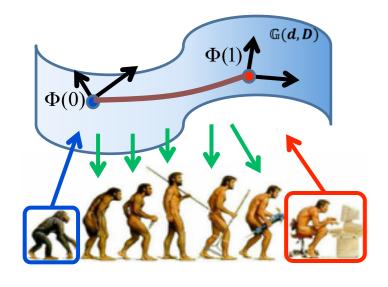
Well-modeled domain knowledge

Dataset \neq domain, cross-dataset generalization by Identifying landmarks from dataset Reshaping data to obtain good-quality domains

Kernel methods for domain adaptation:

Inferring domain invariant features Geodesic flow kernel (GFK) Kernel trick Directly matching distributions Landmarks and Latent domains Kernel embedding of distributions

Code available: http://www-scf.usc.edu/~boqinggo



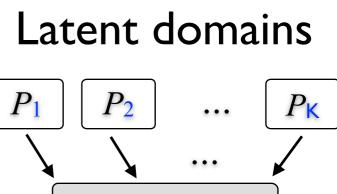
Geodesic flow kernel

$$\langle z_i^{\infty}, z_j^{\infty} \rangle$$

= $\int_0^1 \left(\Phi(t)^T x_i \right)^T \left(\Phi(t)^T x_i \right) dt$
= $x_i^T G x_j$

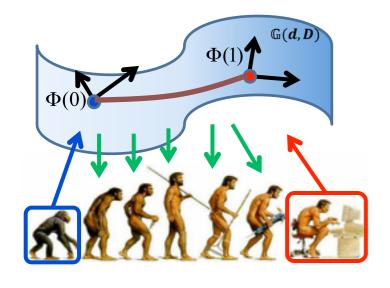
$$\min_{\text{landmarks}} d(P_{\mathcal{L}},$$

$$P_{\mathcal{L}}, P_{\mathcal{T}})$$



Thanks!

Code available: http://www-scf.usc.edu/~boqinggo



Geodesic flow kernel

$$\langle z_i^{\infty}, z_j^{\infty} \rangle$$

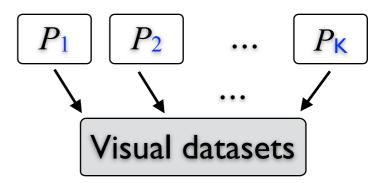
= $\int_0^1 \left(\Phi(t)^T x_i \right)^T \left(\Phi(t)^T x_i \right) dt$
= $x_i^T G x_j$

Landmarks

 $\min_{ ext{landmarks}} d(F$

$$(P_{\mathcal{L}}, P_{\mathcal{T}})$$

Latent domains



Latent domains

Evaluation strategy

Domain adaptation from **discovered domains** vs. from original source domains/datasets to all possible target domains

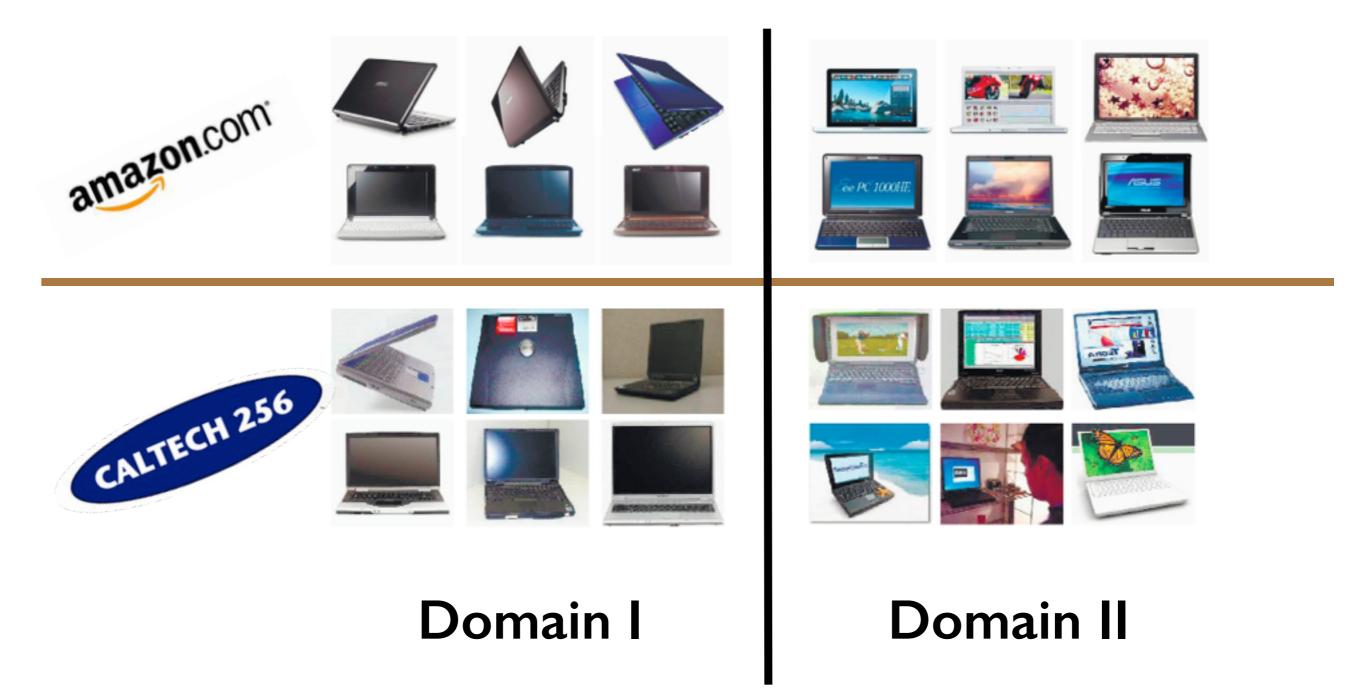
Evaluation metric: expected/averaged accuracy

 $\mathbb{E}_{\mathcal{T}} \left[\text{domains} | \text{datasets} \right] \to \mathcal{T}$

Hard to manually define discrete domains

Amazon images from [Saenko et al.'10].

Our reshaped domains



Results: reshaping test data

S	5	Best domain	Reshaping
View 012	37.3	37.7	38.5
View 123	39.9	40.4	41.1
View 234	47.8	46.5	49.2
View 340	52.3	50.7	54.9
View 401	43.3	43.9	44.8

Reshaping both training and test data gives rise to the best performance.