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Long Term Goal: Visual Scene Understanding

Automatic systems that can analyze and interpret visual data

"Three men sit
at a table in a pub,
drinking beer. One
of them talks while
the others listen."




Good Results under Constant Conditions...

person

Object Detection Scene Categorization

Action Classification Object Tracking

Images: ImageNet, SUN, Hollywood, Babenko



Open Problem: Domain Shift
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Images: [Hofmann et. al., CVPR 2014]



A (Learning) Task
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Definition: A (Learning) Task

Task: T'={X,V,p, 5, ¢}

e Input set, X, e.g. images
e Label set, ), e.g. "object" vs. "background"
e Data distribution: p(z, y) (unknown to learner)

Training set: S = {(z1, 1), -, (T, Ym) } b p(z,y)
Loss function: ¢: )Y xJY — R

Goal: find a function f : X — ) with small risk,

E,y)~p(zy) €0y, f(z))




Definition: A (Learning) Task

Task: T'={X,V,p, 5, ¢}

e Input set, X, e.g. images
e Label set, ), e.g. "object" vs. "background"
e Data distribution: p(z, y) (unknown to learner)

o Training set: S = {(z1,%1), -, (@, ym)} =" p(z, 1)
e lLoss function: £: Y x)Y — R
Think: 0/1-Loss, ¢(y,y) = [y # V] "correct" or "incorrect"

Goal: find a function f : X — ) with small risk,

Ey~p@y €y, f(z)) = Pr " {flz)#y}

(z,y)~p(z,

Think: f makes few mistakes (at test time).
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Definition: Domain Shift

Task: T'={X,V,p, S}

e Input space, X, e.g. images
e Output space, ), e.g. label: "cat" or "dog"
e Data distribution: p(z, y) (unknown to learner)
e Training set: S = {(z1, %), (Tm, Ym)} ~ p(z,y)

New: distribution at prediction time: p/(z, y) (also unknown)

Goal: find classifier f : X — ) that works well at prediction time

min; K Uy, f(z))

(z,9)~ p'(z,v)




Definition: Domain Shift

Task: T'={X,V,p, S}

e Input space, X, e.g. images
e Output space, ), e.g. label: "cat" or "dog"
e Data distribution: p(z, y) (unknown to learner)

Training set: S ={(z1, 1), -, (T, Ym)} ~ p(2,9)

New: distribution at prediction time: p/(z, y) (also unknown)

Goal: find classifier f : X — ) that works well at prediction time

min; K Uy, f(z))

(z,9)~ p'(z,v)

This is hopeless, unless we have additional information!
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Domain Adaptation Scenarios

Supervised Domain Adaptation

e Given: (few) samples from target distribution:

S =A(z, 1), (@ un)t ~ P(2,y)

Unsupervised Domain Adaptation
e Given: (many) unlabeled samples from target distribution:

S ={a,...,1,} ~ p'(2)

Blind Domain Adaptation

e no samples from target distribution
(but additional assumptions on the distributions)




Learning with a Time-Varying Data Distribution

Our Assumptions:

e The underlying data distribution changes smoothly over time.

e We observe samples from more than one point of time.

Examples:
o Influenza: every season there's slightly different viruses

e Embedded sensors: material fatique changes noise
characteristics

e Spam filters: spammers adapt to countermeasures.




Learning with a Time-Varying Data Distribution

Assumptions:

e The underlying data distribution changes smoothly over time.
e We observe samples from more than one point of time.

Computer Vision Example:
e Object design evolves over time

1980s 1990s

Images: [Rematas et al., ICCV VisDA, 2013]




Learning with a Time-Varying Data Distribution




Learning with a Time-Varying Data Distribution




Learning with a Time-Varying Data Distribution




Learning with a Time-Varying Data Distribution




Learning with a Time-Varying Data Distribution




Learning with a Time-Varying Data Distribution




Learning with a Time-Varying Data Distribution

t = 4 (the future)
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Learning with a Time-Varying Data Distribution

Task:
e Data space, Z, e.g. images, or image/label pairs
e Time-varying data distribution: d(z) fort=1,2,...

e Sample sets: S* = {(2f,..., 2L} ~ di(z2) fort=1,...,T

Goal: predict distribution d7,; or a sample set ST ~ dp,
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Learning with a Time-Varying Data Distribution

Task:
e Data space, Z, e.g. images, or image/label pairs
e Time-varying data distribution: d;(z) fort=1,2,...
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predicted




Related Work: Motion Models for Tracking

Given: partial object trajectory

Task: predict likely next locations

Ant image: [Khan et al, IROS 2003]




Related Work: Learning (Shape) Dynamics

Given: set of sequences

HARRRRRK AN ALY
WA ARRA 2ERELE0Y

Task: learn a model that can extrapolate

REREE

Images: [Wang et al, TPAMI 2003], [Cremers, TPAMI 2006]




Related Work: Activity Forecasting

Given: set of video sequences

Task: make long-term prediction of object movement

Images: [Kitani et al, ECCV 2012], [Walker et al, CVPR 2014]




What’s the difference?

Learning Object Dynamics:

e training data: observations of objects changing over time
L og RoR R ARAAR
BAARARAR  AANALL
RS @ g n,
MIEEARA BEERLEYY
e extract variation from object corresponence between time steps

Blind Domain Adaptation:
e training data: changing

e no corresponences between examples at different times



Extrapolating the Distribution Dynamics

[CHL, "Blind Domain Adaptation: An RKHS Approach", arxiv:1406.5362 [stat.ML]]

predicted

Three useful tools:

e Hilbert space embeddings of probability distributions (smoia ctat., ALT 2007]
e Vector-valued regression |micchelii& Pontil, Neural Computation 2005]

e Kernel Herding (chen etat., uai 2010]



Hilbert Space Embeddings of Probability Distributions

[Smola et al. "'A Hilbert space embedding for distributions", ALT 2007]

Notation:
e Z, input space, e.g. images, or image/label pairs

e :Zx Z — R, positive definite kernel function
e 7, the induced reproducing kernel Hilbert space (RKHS)
e : Z — H, the induced feature map, ¢(z) = k(z,-)

For any probability distribution p on Z:
o u(p) =E, . {e(2)} mean vector embedding of p into ‘H

Given aset S ={#,...,2,} of i.i.d. samples from p:

o 4(8) =131 () empirical mean vector embedding

T on



Hilbert Space Embeddings of Probability Distributions

[Smola et al. "'A Hilbert space embedding for distributions", ALT 2007]

Same construction as kernel density estimation

but result has interpretation as vector in a Hilbert space.

Properties:

embedding allows us to treat distributions as vectors
(8,) = u(p) for n — 00, i S, = {21, 2} ~ p
(A(S), 108" = X K (21, 27)

|(S) — f(S")||3, measures how similar S and S are

Eop@{f(2)} = (u(p), fa for f € H
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[Smola et al. "'A Hilbert space embedding for distributions", ALT 2007]

Same construction as kernel density estimation

but result has interpretation as vector in a Hilbert space.

Properties:

embedding allows us to treat distributions as vectors
(8,) = u(p) for n — 00, i S, = {21, 2} ~ p
(A(S), 108" = X K (21, 27)

|(S) — fu(S")||3, measures how similar S and S are

Eop@{f(2)} = (u(p), fa for f € H



Vector-Valued Regression

[Micchelli, Pontil, ""On learning vector-valued functions', Neural Computation, 2005]

Setting:
e Given: input vectors vy, ... v, with v; € V
e Given: output vectors wy, ... w, with w; € W
e Goal: find operator A : V — W such that Tv; = w;
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[Micchelli, Pontil, ""On learning vector-valued functions', Neural Computation, 2005]

Setting:
e Given: input vectors vy, ... v, with v; € V
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i=1



Vector-Valued Regression

[Micchelli, Pontil, ""On learning vector-valued functions', Neural Computation, 2005]

Setting:
e Given: input vectors vy, ... v, with v; € V
e Given: output vectors wy, ... w, with w; € W
e Goal: find operator A : V — W such that Tv; = w;

Operator-valued least-squared regression:
e Find A by minimizing

DN | —

n

> llwi = Awilly + A Az )
i=1

Closed-form solution (similar to scalar case):

Bijl);— with B = (K + )\ld)_l and Kij = <Uz'7 Uj)\)
1

n n
=1 j=



Extrapolating the Distribution Dynamics

predicted

t=4

Given: sequence of embedded distributions, ji; — jio — -+ — fir

Goal: predict next distribution fi7;




Extrapolating the Distribution Dynamics

Given: sample sets S1,...,57 C Z, kernel k: Zx Z - R

Algorithm:
e form embeddings i, = £ Y7, p(zf), for t=1,..., T
e estimate operator A : ‘H — H by minimizing
1 T-1

5 3 i — AR+ AR
t=1
e predict fip,1 by applying A to fir

T
firyr = Apr =Y Bufir with 8 = (K +Ad) ™' [k(Sy, Sr11)]5

=2

Observation:
e [i7,1 consists of weighted samples from St ... ST
e weights can be positive or negative!



Extrapolating the Distribution Dynamics

Synthetic example: Gaussians with decreasing variance




Training a Classifier for the Future

Predictive Domain Adaptation:
e Given: training sets Sy = {(z{, y{), ..., (%}, Y%, ) }i=1,...T
e Task: learn a classifier f : X — ) for time T + 1

Algorithm:
1) define joint kernel k((z,y), (Z,y)) = kx(z,2)[y = Y],
where ky(z,Z) is an image kernel, e.g. x2.
2) predict future joint distribution 7. of (z,y) in form of
weights 3y for t =1,...., T, i=1,...,n.
3) learn a classifier f : X — ) from weighted sample sets




Training a Classifier for the Future

Predictive Domain Adaptation:
e Given: training sets Sy = {(z{, y{), ..., (%}, Y%, ) }i=1,...T
e Task: learn a classifier f : X — ) for time T + 1

Algorithm:
1) define joint kernel k((z,y), (Z,y)) = kx(z,2)[y = Y],
where ky(z,Z) is an image kernel, e.g. x2.
2) predict future joint distribution 7. of (z,y) in form of
weights 3y for t =1,...., T, i=1,...,n.
3) learn a classifier f : X — ) from weighted sample sets
How?

a) some method support per-sample weights (even if negative!)
b) create a new training set according to fip1




Creating A Sample Set From an Embedded Distribution

predicted




(Kernel) Herding

[Chen et al., ""Super-samples from kernel herding", UAI 2010], [Bach et al., ""On the
equivalence between herding and conditional gradient algorithms", ICML 2012]

Given: embedded distribution, u € H,
Task: find sample set, 21, ..., 2, € Z, such that p~ L, ()



(Kernel) Herding

[Chen et al., ""Super-samples from kernel herding", UAI 2010], [Bach et al., ""On the
equivalence between herding and conditional gradient algorithms", ICML 2012]

Given: embedded distribution, u € H,
Task: find sample set, 21, ..., 2, € Z, such that p~ L, ()

Idea: minimize || — = 3, (%) ||3, over all (z,...,2,) € Z™

Herding = Greedy Minimization
e 7 = argmax z),
1 = (e(2), 1.,

e fori=2,...,n:

1 i—1
% = argmax  (p(2), p— =2 so(zj)>H
k=1

2€EZ

Caveat: argmax ., might not easily computable.



Synthetic example: Gaussians with decreasing variance
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Blind Domain Adaptation: CarEvolution dataset [1]
e 3 classes, 1086 images in 4 groups: 1970s, 1980s, 1990s, 2000s

Mercedes
Accuracy (SVM) Fisher Vectors | DeCAF features
1970s — 2000s 39.3% 38.2%
1980s — 2000s 43.8% 48.4%
1990s — 2000s 49.0% 52.4%
all — 2000s 51.2% 52.1%
proposed (temporal order) 51.5% 56.2%

[1] [Rematas et al, "Does Evolution cause a Domain Shift?", ICCV VisDA, 2013]



Blind Domain Adaptation: CarEvolution dataset [1]
e 3 classes, 1086 images in 4 groups: 1970s, 1980s, 1990s, 2000s

Mercedes

Accuracy (SVM) Fisher Vectors | DeCAF features
2010s — 1970s 33.5% 34.0%
2000s — 1970s 31.6% 42.7%
1990s — 1970s 46.1% 46.6%
1980s — 1970s 44.7% 33.5%
all = 1970s 46.1% 49.0%
proposed (inverse order) 48.5% 54.4%

[1] [Rematas et al, "Does Evolution cause a Domain Shift?", ICCV VisDA, 2013]



Final words...

Summary:

e Ordinary supervised learning: well understood, few surprises

e Learning with changing data distributions: many open
problems!

¢ Reading the machine learning literature can be inspiring!
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