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Long Term Goal: Visual Scene Understanding
Automatic systems that can analyze and interpret visual data

→



Good Results under Constant Conditions...

Object Detection Scene Categorization

Action Classification Object Tracking

Images: ImageNet, SUN, Hollywood, Babenko



Open Problem: Domain Shift

Data distribution changes between training and test time
Images: [Hofmann et. al., CVPR 2014]
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Definition: A (Learning) Task

Task: T = {X ,Y , p, S , `}
• Input set, X , e.g. images
• Label set, Y , e.g. "object" vs. "background"
• Data distribution: p(x , y) (unknown to learner)
• Training set: S = {(x1, y1), . . . , (xm, ym)} i.i.d.∼ p(x , y)
• Loss function: ` : Y × Y → R

Think: 0/1-Loss, `(y, ȳ) = Jy 6= ȳK "correct" or "incorrect"

Goal: find a function f : X → Y with small risk,

E(x,y)∼p(x,y) `(y, f (x))

= Pr
(x,y)∼p(x,y)

{ f (x) 6= y }

Think: f makes few mistakes (at test time).



Definition: A (Learning) Task

Task: T = {X ,Y , p, S , `}
• Input set, X , e.g. images
• Label set, Y , e.g. "object" vs. "background"
• Data distribution: p(x , y) (unknown to learner)
• Training set: S = {(x1, y1), . . . , (xm, ym)} i.i.d.∼ p(x , y)
• Loss function: ` : Y × Y → R
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Definition: Domain Shift

Task: T = {X ,Y , p, S}
• Input space, X , e.g. images
• Output space, Y , e.g. label: "cat" or "dog"
• Data distribution: p(x , y) (unknown to learner)
• Training set: S = {(x1, y1), . . . , (xm, ym)} ∼ p(x , y)

New: distribution at prediction time: p′(x , y) (also unknown)

Goal: find classifier f : X → Y that works well at prediction time

minf E(x,y)∼ p′(x, y) `(y, f (x))

This is hopeless, unless we have additional information!
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Domain Adaptation Scenarios

Supervised Domain Adaptation
• Given: (few) samples from target distribution:

S ′ = {(x ′1, y ′1), . . . , (x ′m, y ′m)} ∼ p′(x , y)

Unsupervised Domain Adaptation
• Given: (many) unlabeled samples from target distribution:

S ′ = {x ′1, . . . , x ′m} ∼ p′(x)

Blind Domain Adaptation
• no samples from target distribution

(but additional assumptions on the distributions)
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Learning with a Time-Varying Data Distribution

Our Assumptions:
• The underlying data distribution changes smoothly over time.
• We observe samples from more than one point of time.

Examples:
• Influenza: every season there’s slightly different viruses

• Embedded sensors: material fatique changes noise
characteristics

• Spam filters: spammers adapt to countermeasures.



Learning with a Time-Varying Data Distribution

Assumptions:
• The underlying data distribution changes smoothly over time.
• We observe samples from more than one point of time.

Computer Vision Example:
• Object design evolves over time

1970s 1980s 1990s

Images: [Rematas et al., ICCV VisDA, 2013]
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Learning with a Time-Varying Data Distribution

Task:
• Data space, Z, e.g. images, or image/label pairs
• Time-varying data distribution: dt(z) for t = 1, 2, . . .
• Sample sets: S t = {(z t

1, . . . , z t
mt} ∼ dt(z) for t = 1, . . . ,T

Goal: predict distribution dT+1 or a sample set ST+1 ∼ dT+1
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Related Work: Motion Models for Tracking

Given: partial object trajectory
Task: predict likely next locations

Ant image: [Khan et al, IROS 2003]



Related Work: Learning (Shape) Dynamics

Given: set of sequences

Task: learn a model that can extrapolate

Images: [Wang et al, TPAMI 2003], [Cremers, TPAMI 2006]



Related Work: Activity Forecasting

Given: set of video sequences
Task: make long-term prediction of object movement

Images: [Kitani et al, ECCV 2012], [Walker et al, CVPR 2014]



What’s the difference?

Learning Object Dynamics:
• training data: observations of objects changing over time

• extract variation from object corresponence between time steps

Blind Domain Adaptation:
• training data: changing distribution/populations, not individuals

• no corresponences between examples at different times



Extrapolating the Distribution Dynamics
[CHL, "Blind Domain Adaptation: An RKHS Approach", arxiv:1406.5362 [stat.ML]]

t=1 t=2 t=3 t=4

RKHS 
embedding He
rdi

ng

RKHS 
embedding

RKHS 

embedding

observed predicted

Three useful tools:
• Hilbert space embeddings of probability distributions [Smola et al., ALT 2007]

• Vector-valued regression [Micchelli & Pontil, Neural Computation 2005]

• Kernel Herding [Chen et al., UAI 2010]



Hilbert Space Embeddings of Probability Distributions
[Smola et al. "A Hilbert space embedding for distributions", ALT 2007]

Notation:
• Z, input space, e.g. images, or image/label pairs

• k : Z × Z → R, positive definite kernel function

• H, the induced reproducing kernel Hilbert space (RKHS)

• ϕ : Z → H, the induced feature map, ϕ(z) = k(z , ·)

For any probability distribution p on Z:
• µ(p) = Ez∼p{ϕ(z)} mean vector embedding of p into H

Given a set S = {z1, . . . , zn} of i.i.d. samples from p:
• µ̂(S) = 1

n
∑n

i=1 ϕ(zi) empirical mean vector embedding



Hilbert Space Embeddings of Probability Distributions
[Smola et al. "A Hilbert space embedding for distributions", ALT 2007]

Same construction as kernel density estimation

→

but result has interpretation as vector in a Hilbert space.

Properties:
• embedding allows us to treat distributions as vectors
• µ̂(Sn)→ µ(p) for n →∞, if Sn = {z1, . . . , zn} ∼ p
• 〈µ̂(S), µ̂(S ′)〉H = ∑

i,j k(zi , z ′j)
• ‖µ̂(S)− µ̂(S ′)‖2

H measures how similar S and S ′ are
• Ez∼p(z){f (z)} = 〈µ(p), f 〉H for f ∈ H
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Vector-Valued Regression
[Micchelli, Pontil, "On learning vector-valued functions", Neural Computation, 2005]

Setting:
• Given: input vectors v1, . . . vn with vi ∈ V
• Given: output vectors w1, . . .wn with wi ∈ W
• Goal: find operator A : V → W such that Tvi ≈ wi

Operator-valued least-squared regression:
• Find A by minimizing

1
2

n∑
i=1
‖wi −Avi‖2

W + λ‖A‖2
L(V,W)

Closed-form solution (similar to scalar case):

A =
n∑

i=1
wi

n∑
j=1

Bijv>j with B = (K + λId)−1 and Kij = 〈vi , vj〉V
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Extrapolating the Distribution Dynamics
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Given: sequence of embedded distributions, µ̂1 → µ̂2 → · · · → µ̂T

Goal: predict next distribution µ̂T+1



Extrapolating the Distribution Dynamics

Given: sample sets S1, . . . , ST ⊂ Z, kernel k : Z × Z → R

Algorithm:
• form embeddings µ̂t = 1

n
∑nt

i=1 ϕ(x i
t ), for t = 1, . . . ,T

• estimate operator A : H → H by minimizing
1
2

T−1∑
t=1
‖µ̂t+1 −Aµ̂t‖2

H + λ‖A‖2

• predict µ̃T+1 by applying A to µ̂T

µ̃T+1 = Aµ̂T =
T∑

t=2
βtµ̂t with β = (K +λId)−1[k(St , ST+1)]T−1

t=1

Observation:
• µ̃T+1 consists of weighted samples from S1, . . . , ST

• weights can be positive or negative!



Extrapolating the Distribution Dynamics

Synthetic example: Gaussians with decreasing variance
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Synthetic example: Gaussians with shifting mean
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Training a Classifier for the Future

Predictive Domain Adaptation:
• Given: training sets St = {(x t

1, yt
1), . . . , (x t

nt , y
t
nt )}t=1,...,T

• Task: learn a classifier f : X → Y for time T + 1

Algorithm:
1) define joint kernel k( (x , y), (x̄ , ȳ) ) = kX (x , x̄)Jy = ȳK,

where kX (x , x̄) is an image kernel, e.g. χ2.
2) predict future joint distribution µ̃T+1 of (x , y) in form of

weights βi
t for t = 1, . . . ,T , i = 1, . . . , nt .

3) learn a classifier f : X → Y from weighted sample sets

How?
a) some method support per-sample weights (even if negative!)
b) create a new training set according to µ̃T+1
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Creating A Sample Set From an Embedded Distribution
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(Kernel) Herding
[Chen et al., "Super-samples from kernel herding", UAI 2010], [Bach et al., "On the
equivalence between herding and conditional gradient algorithms", ICML 2012]

Given: embedded distribution, µ ∈ H,
Task: find sample set, z1, . . . , zn ∈ Z, such that µ ≈ 1

n
∑

i ϕ(zi)

Idea: minimize ‖µ− 1
n

∑
i ϕ(zi)‖2

H over all (z1, . . . , zn) ∈ Zn.

Herding ≡ Greedy Minimization
• z1 = argmax

z∈Z

〈
ϕ(z), µ

〉
H

• for i = 2, . . . , n:

zi = argmax
z∈Z

〈
ϕ(z), µ− 1

i

i−1∑
k=1

ϕ(zj)
〉
H

Caveat: argmaxz∈Z might not easily computable.
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Experiments

Synthetic example: Gaussians with decreasing variance
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Synthetic example: Gaussians with shifting mean
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Experiments

Blind Domain Adaptation: CarEvolution dataset [1]
• 3 classes, 1086 images in 4 groups: 1970s, 1980s, 1990s, 2000s

BMW Mercedes VW

Accuracy (SVM) Fisher Vectors DeCAF features
1970s → 2000s 39.3% 38.2%
1980s → 2000s 43.8% 48.4%
1990s → 2000s 49.0% 52.4%

all → 2000s 51.2% 52.1%
proposed (temporal order) 51.5% 56.2%

[1] [Rematas et al, "Does Evolution cause a Domain Shift?", ICCV VisDA, 2013]



Experiments

Blind Domain Adaptation: CarEvolution dataset [1]
• 3 classes, 1086 images in 4 groups: 1970s, 1980s, 1990s, 2000s

BMW Mercedes VW

Accuracy (SVM) Fisher Vectors DeCAF features
2010s → 1970s 33.5% 34.0%
2000s → 1970s 31.6% 42.7%
1990s → 1970s 46.1% 46.6%
1980s → 1970s 44.7% 33.5%

all → 1970s 46.1% 49.0%
proposed (inverse order) 48.5% 54.4%

[1] [Rematas et al, "Does Evolution cause a Domain Shift?", ICCV VisDA, 2013]



Final words...

Summary:
• Ordinary supervised learning: well understood, few surprises
• Learning with changing data distributions: many open

problems!
• Reading the machine learning literature can be inspiring!

Thanks to Funding Sources:

Open Positions at IST Austria (Postdoc, PhD, Internships):
visit www.ist.ac.at/˜chl, or send email to chl@ist.ac.at
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