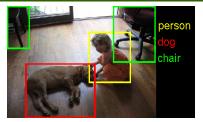
Christoph Lampert

TASK-CV Workshop at ECCV, September 12, 2014

Institute of Science and Technology

Long Term Goal: Visual Scene Understanding Automatic systems that can analyze and interpret visual data

Good Results under Constant Conditions...



Object Detection

Action Classification

Scene Categorization

Object Tracking

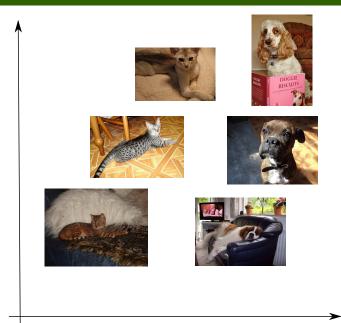
Images: ImageNet, SUN, Hollywood, Babenko

Open Problem: Domain Shift

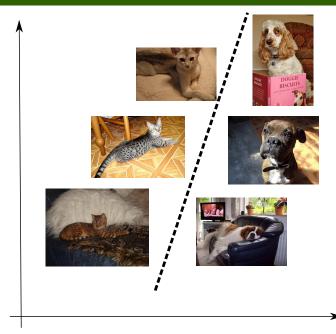
Data distribution changes between training and test time

Images: [Hofmann et. al., CVPR 2014]

A (Learning) Task



A (Learning) Task



Task:
$$T = \{\mathcal{X}, \mathcal{Y}, p, S, \ell\}$$
e.g. images• Input set, \mathcal{X} ,e.g. "object" vs. "background"• Label set, \mathcal{Y} ,e.g. "object" vs. "background"• Data distribution: $p(x, y)$ (unknown to learner)• Training set: $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \stackrel{i.i.d.}{\sim} p(x, y)$ • Loss function: $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

Goal: find a function $f : \mathcal{X} \to \mathcal{Y}$ with small risk,

 $\mathbb{E}_{(x,y)\sim p(x,y)} \ \ell(y,f(x))$

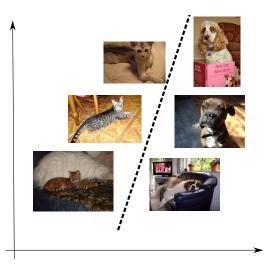
Task:
$$T = \{\mathcal{X}, \mathcal{Y}, p, S, \ell\}$$
e.g. images• Label set, \mathcal{X} ,e.g. "object" vs. "background"• Data distribution: $p(x, y)$ (unknown to learner)• Training set: $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \stackrel{i.i.d.}{\sim} p(x, y)$ • Loss function: $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
Think: $0/1$ -Loss, $\ell(y, \bar{y}) = [\![y \neq \bar{y}]\!]$ "correct" or "incorrect"

Goal: find a function $f : \mathcal{X} \to \mathcal{Y}$ with small risk,

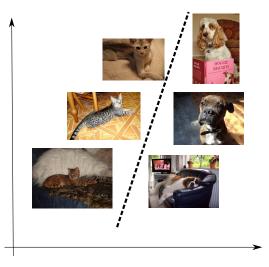
$$\mathbb{E}_{(x,y)\sim p(x,y)} \ell(y,f(x)) = \Pr_{(x,y)\sim p(x,y)} \{ f(x) \neq y \}$$

Think: *f* makes few mistakes (at test time).

Domain Shift



Domain Shift



Task: $T = \{\mathcal{X}, \mathcal{Y}, p, S\}$ • Input space, \mathcal{X} ,• Output space, \mathcal{Y} ,• Data distribution: p(x, y)• Training set: $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \sim p(x, y)$

New: distribution at prediction time: p'(x, y) (also unknown)

Goal: find classifier $f : \mathcal{X} \to \mathcal{Y}$ that works well at prediction time $\min_{f} \qquad \mathbb{E}_{(x,y)\sim \frac{p'(x,y)}{p'(x,y)}} \ell(y,f(x))$ Task: $T = \{\mathcal{X}, \mathcal{Y}, p, S\}$ • Input space, \mathcal{X} ,• Output space, \mathcal{Y} ,• Data distribution: p(x, y)• Training set: $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \sim p(x, y)$

New: distribution at prediction time: p'(x, y) (also unknown)

Goal: find classifier $f : \mathcal{X} \to \mathcal{Y}$ that works well at prediction time $\min_{f} \qquad \mathbb{E}_{(x,y)\sim p'(x,y)} \ \ell(y,f(x))$

This is hopeless, unless we have additional information!

Supervised Domain Adaptation

• Given: (few) samples from target distribution:

$$S' = \{(x'_1, y'_1), \dots, (x'_m, y'_m)\} \sim p'(x, y)$$

Supervised Domain Adaptation

• Given: (few) samples from target distribution:

$$S' = \{(x'_1, y'_1), \dots, (x'_m, y'_m)\} \sim p'(x, y)$$

Unsupervised Domain Adaptation

• Given: (many) unlabeled samples from target distribution:

$$S' = \{x'_1, \dots, x'_m\} \sim p'(x)$$

Supervised Domain Adaptation

• Given: (few) samples from target distribution:

$$S' = \{ (x'_1, y'_1), \dots, (x'_m, y'_m) \} \sim p'(x, y)$$

Unsupervised Domain Adaptation

• Given: (many) unlabeled samples from target distribution:

$$S' = \{x'_1, \dots, x'_m\} \sim p'(x)$$

Blind Domain Adaptation

 no samples from target distribution (but additional assumptions on the distributions)

Our Assumptions:

- The underlying data distribution changes smoothly over time.
- We observe samples from more than one point of time.

Examples:

- Influenza: every season there's slightly different viruses
- *Embedded sensors*: material fatique changes noise characteristics
- Spam filters: spammers adapt to countermeasures.

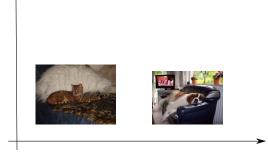
Assumptions:

- The underlying data distribution changes smoothly over time.
- We observe samples from more than one point of time.

Computer Vision Example:

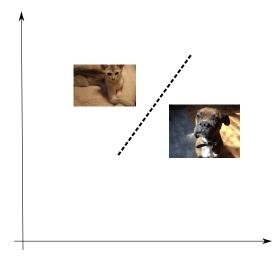
• Object design evolves over time

Images: [Rematas et al., ICCV VisDA, 2013]





t = 2

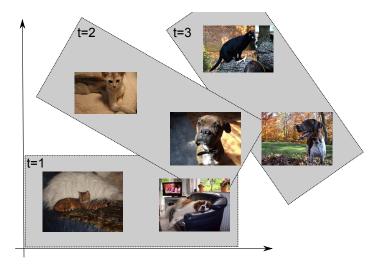


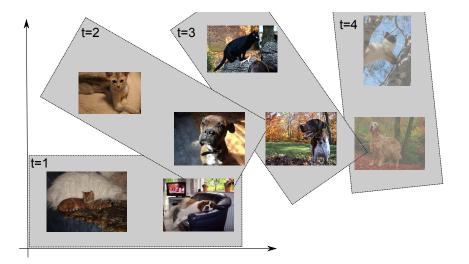
t = 2

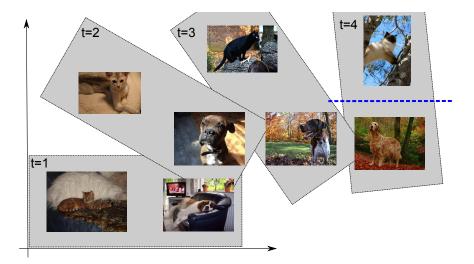
$$t = 3$$



t = 3







Task:

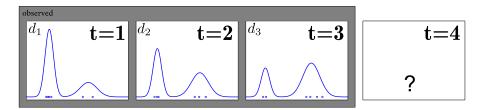
- Data space, \mathcal{Z} , e.g. images, or image/label pairs
- Time-varying data distribution: $d_t(z)$ for t = 1, 2, ...
- Sample sets: $S^t = \{(z_1^t, \dots, z_{m^t}^t\} \sim d_t(z)$ for $t = 1, \dots, T$

Goal: predict distribution d_{T+1} or a sample set $S^{T+1} \sim d_{T+1}$

Task:

- Data space, \mathcal{Z} , e.g. images, or image/label pairs
- Time-varying data distribution: $d_t(z)$ for t = 1, 2, ...• Sample sets: $S^t = \{(z_1^t, ..., z_{m^t}^t\} \sim d_t(z)$ for t = 1, ..., T

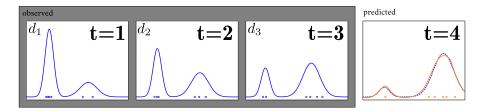
Goal: predict distribution d_{T+1} or a sample set $S^{T+1} \sim d_{T+1}$

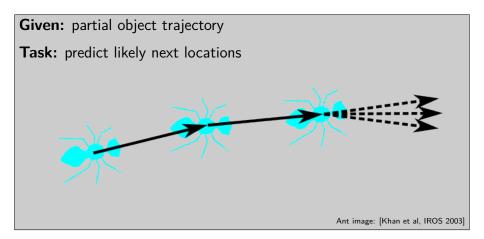


Task:

- Data space, \mathcal{Z} , e.g. images, or image/label pairs
- Time-varying data distribution: $d_t(z)$ for t = 1, 2, ...• Sample sets: $S^t = \{(z_1^t, ..., z_{m^t}^t\} \sim d_t(z)$ for t = 1, ..., T

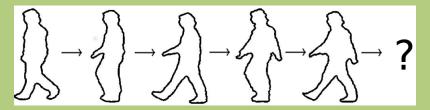
Goal: predict distribution d_{T+1} or a sample set $S^{T+1} \sim d_{T+1}$





Given: set of sequences

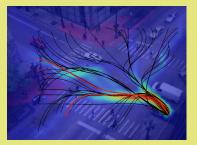
Task: learn a model that can extrapolate



Images: [Wang et al, TPAMI 2003], [Cremers, TPAMI 2006]

Given: set of video sequences

Task: make long-term prediction of object movement



Images: [Kitani et al, ECCV 2012], [Walker et al, CVPR 2014]

Learning Object Dynamics:

• training data: observations of objects changing over time

• extract variation from object corresponence between time steps

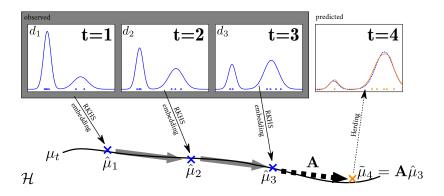
Blind Domain Adaptation:

• training data: changing distribution/populations, not individuals

• no corresponences between examples at different times

Extrapolating the Distribution Dynamics

[CHL, "Blind Domain Adaptation: An RKHS Approach", arxiv:1406.5362 [stat.ML]]



Three useful tools:

- Hilbert space embeddings of probability distributions [Smola et al., ALT 2007]
- Vector-valued regression [Micchelli & Pontil, Neural Computation 2005]
- Kernel Herding [Chen et al., UAI 2010]

Notation:

- \mathcal{Z} , *input space*, e.g. images, or image/label pairs
- $k: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$, positive definite kernel function
- *H*, the induced *reproducing kernel Hilbert space (RKHS)*
- $\pmb{\varphi}:\mathcal{Z}\to\mathcal{H}$, the induced feature map, $\pmb{\varphi}(z)=k(z,\cdot)$

For any probability distribution p on \mathcal{Z} :

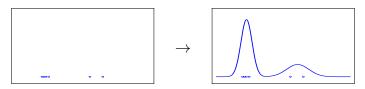
• $\mu(p) = \mathbb{E}_{z \sim p} \{ \varphi(z) \}$ mean vector embedding of p into \mathcal{H}

Given a set $S = \{z_1, \ldots, z_n\}$ of i.i.d. samples from p:

• $\hat{\mu}(S) = \frac{1}{n} \sum_{i=1}^{n} \varphi(z_i)$ empirical mean vector embedding

Hilbert Space Embeddings of Probability Distributions [Smola et al. "A Hilbert space embedding for distributions", ALT 2007]

Same construction as kernel density estimation



but result has interpretation as vector in a Hilbert space.

Properties:

• embedding allows us to treat distributions as vectors

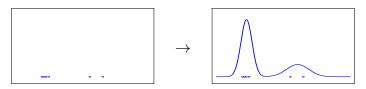
•
$$\hat{\mu}(S_n) \to \mu(p)$$
 for $n \to \infty$, if $S_n = \{z_1, \dots, z_n\} \sim p$

•
$$\langle \hat{\mu}(S), \hat{\mu}(S') \rangle_{\mathcal{H}} = \sum_{i,j} k(z_i, z'_j)$$

- $\|\hat{\mu}(S) \hat{\mu}(S')\|_{\mathcal{H}}^2$ measures how similar S and S' are
- $\mathbb{E}_{z \sim p(z)} \{ f(z) \} = \langle \mu(p), f \rangle_{\mathcal{H}} \text{ for } f \in \mathcal{H}$

Hilbert Space Embeddings of Probability Distributions [Smola et al. "A Hilbert space embedding for distributions", ALT 2007]

Same construction as kernel density estimation



but result has interpretation as vector in a Hilbert space.

Properties:

• embedding allows us to treat distributions as vectors

•
$$\hat{\mu}(S_n) \to \mu(p)$$
 for $n \to \infty$, if $S_n = \{z_1, \dots, z_n\} \sim p$

•
$$\langle \hat{\mu}(S), \hat{\mu}(S') \rangle_{\mathcal{H}} = \sum_{i,j} k(z_i, z'_j)$$

• $\|\hat{\mu}(S) - \hat{\mu}(S')\|_{\mathcal{H}}^2$ measures how similar S and S' are

•
$$\mathbb{E}_{z \sim p(z)} \{ f(z) \} = \langle \mu(p), f \rangle_{\mathcal{H}} \text{ for } f \in \mathcal{H}$$

Vector-Valued Regression

[Micchelli, Pontil, "On learning vector-valued functions", Neural Computation, 2005]

Setting:

- Given: input vectors $v_1, \ldots v_n$ with $v_i \in \mathcal{V}$
- Given: output vectors $w_1, \ldots w_n$ with $w_i \in \mathcal{W}$
- Goal: find operator $\mathbf{A}: \mathcal{V} \to \mathcal{W}$ such that $Tv_i \approx w_i$

Vector-Valued Regression

[Micchelli, Pontil, "On learning vector-valued functions", Neural Computation, 2005]

Setting:

- Given: input vectors $v_1, \ldots v_n$ with $v_i \in \mathcal{V}$
- Given: output vectors $w_1, \ldots w_n$ with $w_i \in \mathcal{W}$
- Goal: find operator $\mathbf{A}: \mathcal{V} \to \mathcal{W}$ such that $Tv_i \approx w_i$

Operator-valued least-squared regression:

 $\bullet~\mathsf{Find}~\mathbf{A}$ by minimizing

$$\frac{1}{2}\sum_{i=1}^{n} \|w_i - \mathbf{A}v_i\|_{\mathcal{W}}^2 + \lambda \|\mathbf{A}\|_{\mathcal{L}(\mathcal{V},\mathcal{W})}^2$$

Vector-Valued Regression

[Micchelli, Pontil, "On learning vector-valued functions", Neural Computation, 2005]

Setting:

- Given: input vectors $v_1, \ldots v_n$ with $v_i \in \mathcal{V}$
- Given: output vectors $w_1, \ldots w_n$ with $w_i \in \mathcal{W}$
- Goal: find operator $\mathbf{A}: \mathcal{V} \to \mathcal{W}$ such that $Tv_i \approx w_i$

Operator-valued least-squared regression:

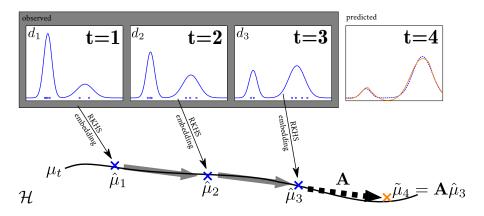
 $\bullet~\mbox{Find}~{\bf A}$ by minimizing

$$\frac{1}{2}\sum_{i=1}^{n} \|w_i - \mathbf{A}v_i\|_{\mathcal{W}}^2 + \lambda \|\mathbf{A}\|_{\mathcal{L}(\mathcal{V},\mathcal{W})}^2$$

Closed-form solution (similar to scalar case):

$$\mathbf{A} = \sum_{i=1}^{n} w_i \sum_{j=1}^{n} B_{ij} v_j^{\top} \quad \text{with} \quad B = (K + \lambda \mathsf{Id})^{-1} \text{ and } K_{ij} = \langle v_i, v_j \rangle_{\mathcal{V}}$$

Extrapolating the Distribution Dynamics



Given: sequence of embedded distributions, $\hat{\mu}_1 \rightarrow \hat{\mu}_2 \rightarrow \cdots \rightarrow \hat{\mu}_T$ **Goal:** predict next distribution $\hat{\mu}_{T+1}$

Extrapolating the Distribution Dynamics

Given: sample sets $S_1, \ldots, S_T \subset \mathcal{Z}$, kernel $k : \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$

Algorithm:

- form embeddings $\hat{\mu}_t = \frac{1}{n} \sum_{i=1}^{n_t} \varphi(x_t^i)$, for $t = 1, \dots, T$
- estimate operator $\mathbf{A}:\mathcal{H}\rightarrow\mathcal{H}$ by minimizing

$$\frac{1}{2} \sum_{t=1}^{T-1} \|\hat{\mu}_{t+1} - \mathbf{A}\hat{\mu}_t\|_{\mathcal{H}}^2 + \lambda \|\mathbf{A}\|^2$$

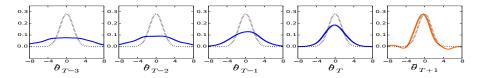
• predict
$$\tilde{\mu}_{T+1}$$
 by applying \mathbf{A} to $\hat{\mu}_T$

$$\tilde{\mu}_{T+1} = \mathbf{A}\hat{\mu}_T = \sum_{t=2}^T \beta_t \hat{\mu}_t \text{ with } \beta = (K+\lambda \mathsf{Id})^{-1} [k(S_t, S_{T+1})]_{t=1}^{T-1}$$

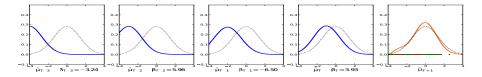
Observation:

- $\tilde{\mu}_{T+1}$ consists of weighted samples from S^1, \ldots, S^T
- weights can be positive or negative!

Synthetic example: Gaussians with decreasing variance



Synthetic example: Gaussians with shifting mean



Training a Classifier for the Future

Predictive Domain Adaptation:

- Given: training sets $S_t = \{(x_1^t, y_1^t), \dots, (x_{n_t}^t, y_{n_t}^t)\}_{t=1,\dots,T}$
- Task: learn a classifier $f : \mathcal{X} \to \mathcal{Y}$ for time T + 1

Algorithm:

- 1) define joint kernel $k((x, y), (\bar{x}, \bar{y})) = k_{\mathcal{X}}(x, \bar{x}) \llbracket y = \bar{y} \rrbracket$, where $k_{\mathcal{X}}(x, \bar{x})$ is an image kernel, e.g. χ^2 .
- 2) predict future joint distribution $\tilde{\mu}_{T+1}$ of (x, y) in form of weights β_t^i for $t = 1, \ldots, T$, $i = 1, \ldots, n_t$.
- 3) learn a classifier $f : \mathcal{X} \to \mathcal{Y}$ from weighted sample sets

Training a Classifier for the Future

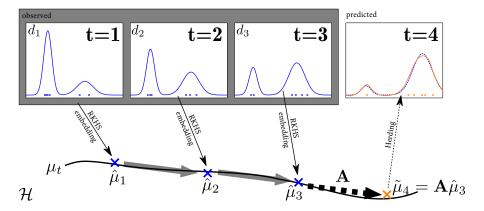
Predictive Domain Adaptation:

- Given: training sets $S_t = \{(x_1^t, y_1^t), \dots, (x_{n_t}^t, y_{n_t}^t)\}_{t=1,\dots,T}$
- Task: learn a classifier $f : \mathcal{X} \to \mathcal{Y}$ for time T+1

Algorithm:

- 1) define joint kernel $k((x, y), (\bar{x}, \bar{y})) = k_{\mathcal{X}}(x, \bar{x}) [\![y = \bar{y}]\!]$, where $k_{\mathcal{X}}(x, \bar{x})$ is an image kernel, e.g. χ^2 .
- 2) predict future joint distribution $\tilde{\mu}_{T+1}$ of (x, y) in form of weights β_t^i for $t = 1, \ldots, T$, $i = 1, \ldots, n_t$.
- 3) learn a classifier $f : \mathcal{X} \to \mathcal{Y}$ from weighted sample sets How?
 - a) some method support per-sample weights (even if negative!)
 - b) create a new training set according to $\tilde{\mu}_{T+1}$

Creating A Sample Set From an Embedded Distribution



(Kernel) Herding

[Chen et al., "Super-samples from kernel herding", UAI 2010], [Bach et al., "On the equivalence between herding and conditional gradient algorithms", ICML 2012]

Given: embedded distribution, $\mu \in \mathcal{H}$,

Task: find sample set, $z_1, \ldots, z_n \in \mathbb{Z}$, such that $\mu \approx \frac{1}{n} \sum_i \varphi(z_i)$

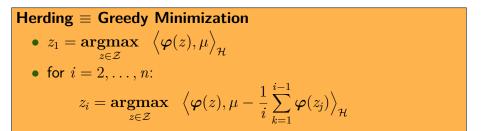
(Kernel) Herding

[Chen et al., "Super-samples from kernel herding", UAI 2010], [Bach et al., "On the equivalence between herding and conditional gradient algorithms", ICML 2012]

Given: embedded distribution, $\mu \in \mathcal{H}$,

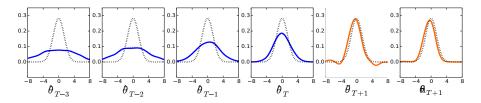
Task: find sample set, $z_1, \ldots, z_n \in \mathbb{Z}$, such that $\mu \approx \frac{1}{n} \sum_i \varphi(z_i)$

Idea: minimize $\|\mu - \frac{1}{n} \sum_{i} \varphi(z_i)\|_{\mathcal{H}}^2$ over all $(z_1, \ldots, z_n) \in \mathcal{Z}^n$.

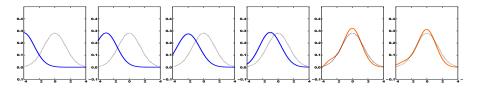


Caveat: $\operatorname{argmax}_{z \in \mathcal{Z}}$ might not easily computable.

Synthetic example: Gaussians with decreasing variance



Synthetic example: Gaussians with shifting mean



Experiments

Blind Domain Adaptation: CarEvolution dataset [1]

• 3 classes, 1086 images in 4 groups: 1970s, 1980s, 1990s, 2000s

BMW

Mercedes

VW

Accuracy (SVM)	Fisher Vectors	DeCAF features
1970s ightarrow 2000s	39.3%	38.2%
$1980 ext{s} ightarrow 2000 ext{s}$	43.8%	48.4%
$1990 ext{s} ightarrow 2000 ext{s}$	49.0%	52.4%
all $ ightarrow$ 2000s	51.2%	52.1%
proposed (temporal order)	51.5%	56.2%

[1] [Rematas et al, "Does Evolution cause a Domain Shift?", ICCV VisDA, 2013]

Experiments

Blind Domain Adaptation: CarEvolution dataset [1]

• 3 classes, 1086 images in 4 groups: 1970s, 1980s, 1990s, 2000s

BMW

Mercedes

VW

Accuracy (SVM)	Fisher Vectors	DeCAF features
$2010 ext{s} ightarrow 1970 ext{s}$	33.5%	34.0%
$2000 ext{s} ightarrow 1970 ext{s}$	31.6%	42.7%
$1990 ext{s} ightarrow 1970 ext{s}$	46.1%	46.6%
$1980 ext{s} ightarrow 1970 ext{s}$	44.7%	33.5%
all $ ightarrow$ 1970s	46.1%	49.0%
proposed (inverse order)	48.5%	54.4%

[1] [Rematas et al, "Does Evolution cause a Domain Shift?", ICCV VisDA, 2013]

Summary:

- Ordinary supervised learning: well understood, few surprises
- Learning with changing data distributions: many open problems!
- Reading the machine learning literature can be inspiring!

Summary:

- Ordinary supervised learning: well understood, few surprises
- Learning with changing data distributions: many open problems!
- Reading the machine learning literature can be inspiring!

Thanks to Funding Sources:

