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This Talk

Domain adaptation	



• Discrepancy	



• Theoretical guarantees	



• Algorithm	



• Enhancements
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Domain Adaptation

Sentiment analysis.	



Language modeling, part-of-speech tagging.	



Statistical parsing.	



Speech recognition.	



Computer vision.
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Solution critical for applications.
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Domain Adaptation Problem

Domains: source           , target          .	



Input: 	



• labeled sample    drawn from source.	



• unlabeled sample    drawn from target.	



Problem: find hypothesis   in    with small expected 
loss with respect to target domain, that is
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Some Related Work

Single-source adaptation:	



• language modeling, probabilistic parsers, maxent 
models: source domain used to define a prior.	



• relation between adaptation and the     distance 
[Ben-David et al. (NIPS 2006) and Blitzer et al. (NIPS 2007)].	



• a few negative examples of adaptation [Ben-David et 

al. (AISTATS 2010)].	



• analysis and learning guarantees for importance 
weighting [(Cortes, Mansour, and MM (NIPS 2010)].
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Distribution Mismatch
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PQ

Which distance should we use	


to compare these distributions?
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Simple Analysis

Proposition: assume that the loss    is bounded by    
, then	



Proof:
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 But, is this bound informative?
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Example - 0/1 Loss
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Discrepancy

Definition:	



• symmetric, triangle inequality, in general not a 
distance.	



• helps compare distributions for arbitrary losses, 
e.g. hinge loss, or     loss.	



• generalization of     distance (Devroye et al. (1996); Kifer et 

al. (2004); Ben-David et al. (2007)).
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(Mansour, MM, Rostami, 2009)
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Discrepancy - Properties

Theorem: for     loss bounded by    , for any       , 
with probability at least       ,
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Discrepancy = Distance

Theorem: let    be a universal kernel (e.g., Gaussian 
kernel) and                                    . Then, for the     
loss, discrepancy is a distance.	



Proof:                                                  is Lipschitz 
for norm         , thus continuous on         .	



•                     implies             for all        .	



• since    is dense in        ,         over         .	



• thus,                         for all        in         .	



• this implies         .
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Theoretical Guarantees

Two types of questions: 	



• difference between average loss of hypothesis   
on    versus   ?	



• difference of loss (measured on   ) between 
hypothesis    obtained when training on           
versus hypothesis    obtained when training         
on          ?
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Generalization Bound

Notation:	



•  	



•  	



Theorem: assume that    obeys the triangle 
inequality, then the following holds:
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LQ(h�Q, f) = min
h⇥H

LQ(h, f)

LP (h�P , f) = min
h⇥H

LP (h, f)

L

LP (h, fP ) �LQ(h, h�Q) + LP (h�P , fP ) + disc(P, Q)

+ LQ(h�Q, h�P ).

[Mansour, MM, Rostami (COLT 2009)]
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Some Natural Cases

When                      ,	



When            (consistent case), 	



• Bound of (Ben-David et al., NIPS 2006) or (Blitzer et al., NIPS 2007): 
always worse in these cases.
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h� = h�Q = h�P
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Regularized ERM Algorithms

Objective function:	



• broad family of algorithms including SVM, SVR, 
kernel ridge regression, etc.
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F bQ(h) = � �h�2
K + �R bQ(h),

where    is a PDS kernel;	


                  is a trade-off parameter; and	


                   is the empirical error of    .
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Guarantees for Reg. ERM

Theorem: let    be a PDS kernel with                   
and   a loss function such that          is   -Lipschitz. 
Assume that          , then, for all                   ,
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[Cortes & MM (TCS 2013)]
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Guarantees for Reg. ERM

Theorem: let    be a PDS kernel with                   
and   the     loss bounded by    . Then, for all        ,	



For                 ,	



•          if    is ε-close to    on samples.	



•        for a Gaussian kernel and   continuous.
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Empirical Discrepancy

Discrepancy distance                critical term in 
bounds.	



Smaller empirical discrepancy guarantees closeness 
of pointwise losses of h’ and h.	



But, can we further reduce the discrepancy?
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Algorithm - Idea

Search for a new empirical distribution     with 
same support:	



Solve modified optimization problem:
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Case of Halfspaces
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Discrepancy Minimization Algorithm

Convex optimization:	



• cast as semi-definite programming (SDP) prob.	



• efficient solution using smooth optimization.	



Algorithm and solution for arbitrary kernels.	



Outperforms other algorithms in experiments.
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[Cortes & MM (TCS 2013)]
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Experiments
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Enhancement

Shortcomings:	



• discrepancy depends on maximizing pair of 
hypotheses.	



•         DM algorithm too conservative.	



Ideas:	



• finer quantity: generalized discrepancy, hypothesis-
dependent.	



• reweighting depending on hypothesis.
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[Cortes, MM, and Munoz (2014)]
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Algorithm

Choose     such that objectives are unif. close:	



Ideally:	



Using convex surrogate     :
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Optimization
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Convex Surrogate Hypothesis Set

Choice of     among balls	



Generalization bound proven to be more favorable 
than DM for some choices of radius   .	



Radius   chosen via cross-validation using small 
amount of labeled data from target.	



Further improvement of empirical results.
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H ��

B(r) = {h�� � H |Lq(h��, fQ) � rp}.

r

r

[Cortes, MM, and Munoz (2014)]
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Conclusion

Theorie of adaptation based on discrepancy:	



• key term in analysis of adaptation and drifting.	



• discrepancy minimization algorithm DM.	



• compares favorably to other adaptation algorithms 
in experiments.	



Generalized discrepancy:	



• extension to hypothesis-dependent reweighting.	



• convex optimization problem.	



• further empirical improvements.
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