Recent Theoretical and Algorithmic Advances in Domain Adaptation

> Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Includes joint work with Corinna Cortes, Yishay Mansour, Andres Muñoz, and Afshin Rostamizadeh.

This Talk

- Domain adaptation
 - Discrepancy
 - Theoretical guarantees
 - Algorithm
 - Enhancements

Domain Adaptation

- Sentiment analysis.
- Language modeling, part-of-speech tagging.
- Statistical parsing.
- Speech recognition.
- Computer vision.

Solution critical for applications.

Domain Adaptation Problem

- **Domains:** source (Q, f_Q) , target (P, f_P) .
- Input:
 - labeled sample S drawn from source.
 - unlabeled sample T drawn from target.
- Problem: find hypothesis h in H with small expected loss with respect to target domain, that is

$$\mathcal{L}_P(h, f_P) = \mathop{\mathrm{E}}_{x \sim P} \left[L(h(x), f_P(x)) \right].$$

Some Related Work

- Single-source adaptation:
 - language modeling, probabilistic parsers, maxent models: source domain used to define a prior.
 - relation between adaptation and the d_A distance [Ben-David et al. (NIPS 2006) and Blitzer et al. (NIPS 2007)].
 - a few negative examples of adaptation [Ben-David et al. (AISTATS 2010)].
 - analysis and learning guarantees for importance weighting [(Cortes, Mansour, and MM (NIPS 2010)].

Distribution Mismatch

Which distance should we use to compare these distributions?

Simple Analysis

Proposition: assume that the loss L is bounded by M, then

$$|\mathcal{L}_Q(h,f) - \mathcal{L}_P(h,f)| \le M L_1(Q,P).$$

Proof: $|\mathcal{L}_{P}(h,f) - \mathcal{L}_{Q}(h,f)| = \left| \underset{x \sim P}{\operatorname{E}} \left[L((h(x),f(x))] - \underset{x \sim Q}{\operatorname{E}} \left[L((h(x),f(x))] \right] \right| \\ = \left| \sum_{x} \left(P(x) - Q(x) \right) L((h(x),f(x))) \right| \\ \leq M \sum_{x} \left| P(x) - Q(x) \right|.$

But, is this bound informative?

Mehryar Mohri

Example - 0/1 Loss

$$|\mathcal{L}_Q(h, f) - \mathcal{L}_P(h, f)| = |Q(a) - P(a)|$$

Mehryar Mohri

Discrepancy

(Mansour, MM, Rostami, 2009)

$$\operatorname{disc}(P,Q) = \max_{h,h'\in H} \left| \mathcal{L}_P(h',h) - \mathcal{L}_Q(h',h) \right|.$$

- symmetric, triangle inequality, in general not a distance.
- helps compare distributions for arbitrary losses, e.g. hinge loss, or L_p loss.
- generalization of d_A distance (Devroye et al. (1996); Kifer et al. (2004); Ben-David et al. (2007)).

Discrepancy - Properties

Theorem: for L_q loss bounded by M, for any $\delta > 0$, with probability at least $1 - \delta$,

$$\operatorname{disc}(P,Q) \leq \operatorname{disc}(\widehat{P},\widehat{Q}) + 4q\left(\widehat{\mathfrak{R}}_{S}(H) + \widehat{\mathfrak{R}}_{T}(H)\right) + 3M\left(\sqrt{\frac{\log\frac{4}{\delta}}{2m}} + \sqrt{\frac{\log\frac{4}{\delta}}{2n}}\right).$$

Discrepancy = Distance

- Theorem: let K be a universal kernel (e.g., Gaussian kernel) and $H = \{h \in \mathbb{H}_K : \|h\|_K \leq \Lambda\}$. Then, for the L_2 loss, discrepancy is a distance.
- Proof: $\Psi: h \mapsto E_{x \sim P}[h^2(x)] E_{x \sim Q}[h^2(x)]$ is Lipschitz for norm $\|\cdot\|_{\infty}$, thus continuous on C(X).
 - $\operatorname{disc}(P,Q) = 0$ implies $\Psi(h) = 0$ for all $h \in \mathbb{H}$.
 - since \mathbb{H} is dense in C(X), $\Psi = 0$ over C(X).
 - thus, $\mathbf{E}_P[f] \mathbf{E}_Q[f] = 0$ for all $f \ge 0$ in C(X).
 - this implies P = Q.

Theoretical Guarantees

Two types of questions:

- difference between average loss of hypothesis h on Q versus P?
- difference of loss (measured on P) between hypothesis h obtained when training on (\hat{Q}, f_Q) versus hypothesis h' obtained when training on (\hat{P}, f_P) ?

Generalization Bound

[Mansour, MM, Rostami (COLT 2009)]

Notation:

•
$$\mathcal{L}_Q(h_Q^*, f) = \min_{h \in H} \mathcal{L}_Q(h, f)$$

• $\mathcal{L}_P(h_P^*, f) = \min_{h \in H} \mathcal{L}_P(h, f)$

Theorem: assume that L obeys the triangle inequality, then the following holds:

$$\mathcal{L}_P(h, f_P) \le \mathcal{L}_Q(h, h_Q^*) + \mathcal{L}_P(h_P^*, f_P) + \operatorname{disc}(P, Q) + \mathcal{L}_Q(h_Q^*, h_P^*).$$

Some Natural Cases

• When
$$h^* = h_Q^* = h_P^*$$
 ,

 $\mathcal{L}_P(h, f_P) \le \mathcal{L}_Q(h, h^*) + \mathcal{L}_P(h^*, f_P) + \operatorname{disc}(P, Q).$

• When $f_P \in H$ (consistent case),

$$|\mathcal{L}_P(h, f_P) - \mathcal{L}_Q(h, f_P)| \le \operatorname{disc}(Q, P).$$

 Bound of (Ben-David et al., NIPS 2006) Or (Blitzer et al., NIPS 2007): always worse in these cases.

Regularized ERM Algorithms

Objective function:

$$F_{\widehat{Q}}(h) = \lambda \|h\|_K^2 + \widehat{R}_{\widehat{Q}}(h),$$

where K is a PDS kernel; $\lambda > 0$ is a trade-off parameter; and $\widehat{R}_{\widehat{O}}(h)$ is the empirical error of h.

 broad family of algorithms including SVM, SVR, kernel ridge regression, etc.

Guarantees for Reg. ERM

[Cortes & MM (TCS 2013)]

Theorem: let K be a PDS kernel with $K(x, x) \leq R^2$ and L a loss function such that $L(\cdot, y)$ is μ -Lipschitz. Assume that $f_P \in H$, then, for all $(x, y) \in X \times Y$,

$$\left|L(h'(x), y) - L(h(x), y)\right| \le \mu R \sqrt{\frac{\operatorname{disc}(\widehat{P}, \widehat{Q}) + \mu \eta}{\lambda}},$$

where $\eta = \max\{L(f_Q(x), f_P(x)) \colon x \in \operatorname{supp}(\widehat{Q})\}.$

Guarantees for Reg. ERM

[Cortes & MM (TCS 2013)]

Theorem: let K be a PDS kernel with $K(x, x) \le R^2$ and L the L_2 loss bounded by M. Then, for all (x, y),

$$|L(h'(x), y) - L(h(x), y)| \le \frac{R\sqrt{M}}{\lambda} \Big(\delta + \sqrt{\delta^2 + 4\lambda \operatorname{disc}(\widehat{P}, \widehat{Q})}\Big),$$

where
$$\delta = \min_{h \in H} \left\| \mathop{\mathrm{E}}_{x \sim \widehat{Q}} \left[\left(h(x) - f_Q(x) \right) \Phi_K(x) \right] - \mathop{\mathrm{E}}_{x \sim \widehat{P}} \left[\left(h(x) - f_P(x) \right) \Phi_K(x) \right] \right\|_K$$
.

• For
$$f_P = f_Q = f$$
,

- $\delta \leq R\epsilon$ if f is ϵ -close to H on samples.
- $\delta = 0$ for a Gaussian kernel and f continuous.

Mehryar Mohri

Empirical Discrepancy

- Discrepancy distance $\operatorname{disc}(\widehat{P}, \widehat{Q})$ critical term in bounds.
- Smaller empirical discrepancy guarantees closeness of pointwise losses of h' and h.
- But, can we further reduce the discrepancy?

Algorithm - Idea

Search for a new empirical distribution q* with same support:

$$q^* = \operatorname*{argmin}_{\operatorname{supp}(q) \subseteq \operatorname{supp}(\widehat{Q})} \operatorname{disc}(\widehat{P}, q).$$

Solve modified optimization problem:

$$\min_{h} F_{q^*}(h) = \sum_{i=1}^{m} q^*(x_i) L(h(x_i), y_i) + \lambda ||h||_K^2.$$

Mehryar Mohri

Case of Halfspaces

Discrepancy Minimization Algorithm [Cortes & MM (TCS 2013)]

- Convex optimization:
 - cast as semi-definite programming (SDP) prob.
 - efficient solution using smooth optimization.
- Algorithm and solution for arbitrary kernels.
- Outperforms other algorithms in experiments.

Experiments

Fig. 11. Results with "easy-to-learn" biasing scheme: Relative MSE performance of (1): Optimal (in black); (2): KMM (in blue); (3): KLIEP (in orange); (4): Uniform (in green); (5): Two-Stage (in brown); and (6): DM (in red). Errors are normalized so that the average MSE of Uniform is 1.

Enhancement

[Cortes, MM, and Munoz (2014)]

- Shortcomings:
 - discrepancy depends on maximizing pair of hypotheses.
 - DM algorithm too conservative.
- Ideas:
 - finer quantity: generalized discrepancy, hypothesisdependent.
 - reweighting depending on hypothesis.

Algorithm

[Cortes, MM, and Munoz (2014)]

Choose Q_h such that objectives are unif. close:

 $\lambda \|h\|_K^2 + \mathcal{L}_{\mathsf{Q}_h}(h, f_Q)$ $\lambda \|h\|_K^2 + \mathcal{L}_{\widehat{P}}(h, f_P).$

Ideally:

$$\mathsf{Q}_{h} = \operatorname*{argmin}_{\mathsf{q}} |\mathcal{L}_{\mathsf{q}}(h, f_{Q}) - \mathcal{L}_{\widehat{P}}(h, f_{P})|.$$

Using convex surrogate H":

$$Q_h = \underset{\mathbf{q}}{\operatorname{argmin}} \max_{h'' \in H''} |\mathcal{L}_{\mathbf{q}}(h, f_Q) - \mathcal{L}(h, h'')|.$$

Optimization

[Cortes, MM, and Munoz (2014)]

$$\mathcal{L}_{\mathbf{Q}_{h}}(h, f_{Q}) = \operatorname*{argmin}_{l \in \{\mathcal{L}_{\mathbf{q}}(h, f_{Q}): \mathbf{q} \in \mathcal{F}(\mathcal{S}_{\mathbf{X}}, \mathbb{R})\}} \max_{h'' \in H''} |l - \mathcal{L}_{\widehat{P}}(h, h'')|$$
$$= \operatorname*{argmin}_{l \in \mathbb{R}} \max_{h'' \in H''} |l - \mathcal{L}_{\widehat{P}}(h, h'')|$$
$$= \frac{1}{2} \Big(\max_{h'' \in H''} \mathcal{L}_{\widehat{P}}(h, h'') + \min_{h'' \in H''} \mathcal{L}_{\widehat{P}}(h, h'') \Big).$$

$$\min_{h} \lambda \|h\|_{K}^{2} + \frac{1}{2} \Big(\max_{h'' \in H''} \mathcal{L}_{\widehat{P}}(h, h'') + \min_{h'' \in H''} \mathcal{L}_{\widehat{P}}(h, h'') \Big).$$

Convex Surrogate Hypothesis Set

[Cortes, MM, and Munoz (2014)]

Choice of H'' among balls

 $B(r) = \{h'' \in H | \mathcal{L}_{q}(h'', f_Q) \le r^p\}.$

- Generalization bound proven to be more favorable than DM for some choices of radius r.
- Radius r chosen via cross-validation using small amount of labeled data from target.
- Further improvement of empirical results.

Conclusion

- Theorie of adaptation based on discrepancy:
 - key term in analysis of adaptation and drifting.
 - discrepancy minimization algorithm DM.
 - compares favorably to other adaptation algorithms in experiments.
- Generalized discrepancy:
 - extension to hypothesis-dependent reweighting.
 - convex optimization problem.
 - further empirical improvements.