Recent Theoretical and Algorithmic
Advances in Domain Adaptation

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu

Includes joint work with Corinna Cortes,
Yishay Mansour, Andres Munoz, and Afshin Rostamizadeh.


mailto:mohri@cims.nyu.edu

|ldeal vs Real VWorld

time

real world

domain

sampling

Mehryar Mohri page 2



This Talk

® Domain adaptation
® Discrepancy
® Theoretical guarantees
® Algorithm

® Enhancements
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Domain Adaptation

Sentiment analysis.
Language modeling, part-of-speech tagging.
Statistical parsing.

Speech recognition.

Computer vision.

—3 Solution critical for applications.
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Domain Adaptation Problem

B Domains: source (Q, fo), target(P, fp).

& |[nput:
® |abeled sample S drawn from source.

® unlabeled sample 7 drawn from target.

® Problem: find hypothesis 2 in H with small expected
loss with respect to target domain, that is

Lp(h, fp) = E [L(h(a;), fp(a;))]

xr~ P
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Some Related Work

| Single-source adaptation:

® |anguage modeling, probabilistic parsers, maxent
models: source domain used to define a prior.

® relation between adaptation and the d 4 distance
[Ben-David et al. (NIPS 2006) and Blitzer et al. (NIPS 2007)].

® a few negative examples of adaptation [Ben-David et
al. (AISTATS 2010)].

® analysis and learning guarantees for importance
weighting [(Cortes, Mansour, and MM (NIPS 2010)].
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Distribution Mismatch

Which distance should we use
to compare these distributions?
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Simple Analysis

B Proposition: assume that the loss L is bounded by
M, then

Lo(h, f) = Lp(h, )| < M L1(Q, P).

® Proof:
Lp(h, f) = Lo(h, ) = | B [L(h), f@)] = B [L((a(x), f(2))]

= |3 (P@) - Q@) L((h(x), ()|
<MY |P@) - Q).

But, is this bound informative?
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Example - O/] Loss

Lo(h, f) = Lp(h, f)] = |Q(a) — Pla)]
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Discrepancy

(Mansour, MM, Rostami, 2009)
& Definition:

- _ / B /
disc(P,Q) = max ‘Lp(h h) — Lo(W, 1),

® symmetric, triangle inequality, in general not a
distance.

® helps compare distributions for arbitrary losses,
e.g. hinge loss, or L, loss.

® generalization of d4 distance (Devroye et al. (1996); Kifer et
al. (2004); Ben-David et al. (2007)).
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Discrepancy - Properties

® Theorem:for L, loss bounded by M, for any § >0,
with probability at least1—4,

disc(P, Q) < disc(P, Q) + 4q 9%5 ) + 5\‘{T

)

oqm
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Discrepancy = Distance

B Theorem:let K be a universal kernel (e.g., Gaussian

kernel) and H = {h € Hg: ||h||x <A}.Then, for the L,
loss, discrepancy is a distance.

B Proof: ¥: h— E,.plh*(z)]—Ez~q[h?(z)] is Lipschitz
for norm|| - || , thus continuous on C(X).
® disc(P,Q)=0 implies U(h)=0 for all h e H.
® sinceH is dense inC(X),¥=0 over C(X).
® thus,Ep[f]—Eg[f]=0forall f>0inC(X).
® this implies P=Q).
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Theoretical Guarantees

B Two types of questions:

e difference between average loss of hypothesis i
on () versus P!

® difference of loss (measured on P) between
hypothesis h obtained when training on (Q, fo)
versus hypothesis h' obtained when training

On(P7 fP)7
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Generalization Bound

[Mansour, MM, Rostami (COLT 2009)]

B Notation:
o Lqolhg, f)=minLo(h, f)
® Lp(hp, f)=minLp(h, f)

B Theorem:assume that L obeys the triangle
inequality, then the following holds:

Lp(h, frp) <Lg(h,hg) + Lp(hp, fp) + disc(P, Q)
+ EQ(hZ)’ h}kg)
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Some Natural Cases
® Whenh™ = hg, = hp,
Lp(h, fp) < Lo(h,h*)+ Lp(h*, fp) + disc(P, Q).

® When fp € H (consistent case),

ILp(h, fP) — Lo(h, fr)| < disc(Q, P).

® Bound of (Ben-David et al., NIPS 2006) OF (Blitzer et al., NIPS 2007);
always worse in these cases.
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Regularized ERM Algorithms

B Objective function:
Fg(h) = M|h]% + Rg(h).

where K is a PDS kernel;
A >0 is a trade-off parameter;and
RQ(h) is the empirical error of h .

® broad family of algorithms including SVM, SVR,
kernel ridge regression, etc.
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Guarantees for Reg. ERM

[Cortes & MM (TCS 201 3)]

B Theorem:let K be a PDS kernel with K (z, z) < R?

and La loss function such that L(-,y) is p-Lipschitz.
Assume that fp € H, then, for all (z,y) e X xY,

\/ disc(P, Q) + un
A Y]

[L(P'(z),y) — L(h(x),y)| < pR

where n = max{L(fo(z), fr(z)): zesupp(Q)}.
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Guarantees for Reg. ERM

[Cortes & MM (TCS 2013)]

B Theorem:let K be a PDS kernel with K (z, z) < R?
and Lthe L, loss bounded by M. Then, for all (z, y),

L((@).9) - Lin(a). )| <

(5 4 \/52 + 4)\disc(ﬁ, @))7

where § = min

heH

E_|(h(a) - fo(@)x(@)] = B_|(h(x) = fr(a) ®x(@)]| -

z~Q x~P

s Forfp=fo=1,
® §<Reif fis €-close to H on samples.

® ) = 0for a Gaussian kernel and f continuous.
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Empirical Discrepancy

® Discrepancy distance disc(P, Q)critical term in
bounds.

B Smaller empirical discrepancy guarantees closeness
of pointwise losses of h” and h.

| But, can we further reduce the discrepancy!?
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Algorithm - Idea

B Search for a new empirical distribution ¢* with
same support:

AN

¢ = argmin  disc(P,q).
supp(q) Csupp(Q)

® Solve modified optimization problem:

min £y Zq i) L(h(xi), yi) + AR/ %
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Case of Halfspaces
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Discrepancy Minimization Algorithm

[Cortes & MM (TCS 201 3)]
® Convex optimization:

® cast as semi-definite programming (SDP) prob.

e efficient solution using smooth optimization.
® Algorithm and solution for arbitrary kernels.

B Outperforms other algorithms in experiments.
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Experiments
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Fig. 11. Results with “easy-to-learn” biasing scheme: Relative MSE performance of (1):
Optimal (in black); (2): KMM (in blue); (3): KLIEP (in orange); (4): Uniform (in green);
(5): Two-Stage (in brown); and (6): DM (in red). Errors are normalized so that the average
MSE of Uniform is 1.
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Enhancement

[Cortes, MM, and Munoz (2014)]
B Shortcomings:

® discrepancy depends on maximizing pair of
hypotheses.

e =3 DM algorithm too conservative.

B |deas:

® finer quantity: generalized discrepancy, hypothesis-
dependent.

® reweighting depending on hypothesis.
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Algorithm

[Cortes, MM, and Munoz (2014)]

B Choose Qy such that objectives are unif. close:

Al|h
i

B [deally:

% + Laq, (h, fo)

Qn = argmin |Lq(h, fq) — Lp(h, fP)].
q

® Using convex surrogate H" :

Qs = argmm max |Lq(h, fo) — L(h,h")].
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Optimization
[Cortes, MM, and Munoz (2014)]

Lq, (h, fo) = argmin max [l — Lz(h,h")]
l€{Lq(h,fq):q€F (Sx ., R)} M'€H”

= argmin max |l — Lz(h,h")

ZGR h//EH//
1
= > max Lp(h,h")+ min La(h,h")).

-3 Convex optimization problem:

1
- 2 - 1 R 1
min Akl % + 5 (h],flneaécﬁ Ls(h, k") + hurréljr}” Ls(h,h ))
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Convex Surrogate Hypothesis Set

[Cortes, MM, and Munoz (2014)]
B Choice of H”among balls

B(r) = {h" € H|Lq(W", fo) < 7).

B Generalization bound proven to be more favorable
than DM for some choices of radius .

B Radius r chosen via cross-validation using small
amount of labeled data from target.

® Further improvement of empirical results.
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Conclusion

® Theorie of adaptation based on discrepancy:
® key term in analysis of adaptation and drifting.
® discrepancy minimization algorithm DM.
® compares favorably to other adaptation algorithms
In experiments.
B Generalized discrepancy:
® extension to hypothesis-dependent reweighting.
® convex optimization problem.

® further empirical improvements.
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