From Virtual to Reality: Fast Adaptation of Virtual Object Detectors to Real Domains
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available 3D models could be a promising new way to train
object detectors on a large scale. In our experiments, detectors
— — trained on virtual data and adapted to real-image statistics
| | 1 08 . —d perform comparably to detectors trained on real image datasets,
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Comparison of unsupervised and supervised adaptation of virtual
detectors using our method with the results of training on
EFFECT OF MISMATCHED STATISTICS ImageNet and supervised adaptation from ImageNet reported 1n
e ———— " 7]. Our supervised-adapted detectors achieve comparable
i Dty Ay X performance despite not using any real source training data, and
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