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ABSTRACT

In this work we focus on the domain adaptation of deformable part-based models (DPMs) for object detection [1]. In
particular, we focus on a relatively unexplored scenario, I.e. incremental domain adaptation for object detection assuming
weak-labeling. Therefore, our algorithm is ready to improve existing source-oriented DPM-based detectors as soon as a
little amount of labeled target-domain training data Is available, and keeps improving as more of such data arrives in a
continuous fashion. For achieving this, we follow a multiple instance learning (MIL) paradigm that operates In an
Incremental per-image basis. As proof of concept, we address the challenging scenario of adapting a DPM-based
pedestrian detector trained with synthetic pedestrians [2, 3] to operate In real-world scenarios.

PROPOSED APPROACH

Time line ™~

Incremental domain adaptation framework. f,7(x) is the classifier trained in a
multiple instance learning (MIL) manual with current target image, while the
final target-domain adapted classifier is: y>f>(x) + v,'f,"(X)
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Algorithm Incremental Domain Adaptation

Input: source classifier: f°, target-domain training images:{/,,t € [1,N]},
coefficients: 7, = ¥ = 0.5.

Output: f* = W/ + W fy

0: fi < f°

l: fort=1.2, ..., N, do

2: Receive image I;, collect samples D = { (x;,y;,h;) }.

3: Predict the labels of the samples in D by f and f/.

4: Compute ¥’ and 7/ by OTL

5: Generate training bags.

6: Learn f | with the collected bags

7: end for
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EXPERIMENTAL RESULTS
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Results of adapting a DPM pedestrian detector trained with synthetic images
to operate in ETH pedestrian dataset.
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Average sguare loss of the source and target classifier in each iteration.
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