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Conclusion
We proposed a method that is:

• Simple and still powerful method with low computational cost.

•Requires only class means/prototypes from the source domains.

•Has only a few parameters (p, l, f ) with reasonable default values.

Its advantages are:

•Can exploit multiple sources in both US and SS scenarios.

•Remains competitive with most existing methods.

•Can handle larger set of real scenarios (e.g. privacy issues).

Experimental validation
Results on Office+Caltech10 [12] with SURF BOV:

• Semi-supervised scenario with the evaluation framework [8].

•ACM used with p = 0.5, l = 5 and f = tanh.
Method C→A D→A W→A A→C D→C W→C A→D C→D W→D A→W C→W D→W Avg
ACM 52.4 50.1 50.3 37.3 37.5 36.8 58.9 59.7 63 68.1 69.6 75.2 55.3
GFK [8] 46.1 46.2 32.1 39.6 33.9 32.1 50.9 55 74.1 56.9 57 74.6 49.8
SA [5] 45.3 45.8 44.8 38.4 35.8 34.1 55.1 56.6 82.3 60.3 60.7 84.8 53.7
MMDT [9] 49.4 46.9 47.7 36.4 34.1 32.2 56.7 56.5 67 64.6 63.8 74.1 52.5
MLDSCM [4] 50.6 48.8 48.4 34.9 34.2 33.4 62.1 61.6 64.7 66.1 65.1 71.5 53.5
DIP-CC [1] 61.8 56.9 53.4 47.8 44.2 43.6 67.5 65.8 92.6 72.5 69.9 89.1 63.7

Results on Office 31 [8] using deep CNN network:

•Unsupervised scenario using the evaluation framework [8].

•ACM used with fc6 [10], p = 0.5, l = 5 and f (u) = max(0, u) (RELU).
Method A→W D→W W→D Avg
ACM 67.5 92.9 94.1 84.8
SA [6] 47.2 91.8 92.4 77.1
CORAL [13] 48.4 96.5 99.2 81.4
DLID [3] 26.1 68.9 84.9 60
DDC [14] 59.4 92.5 91.7 81.2
DAN [11] 66 93.5 95.7 85.1
DAB [7] 67.3 94 93.7 85

Proposed Approach

• sMDA framework to compute W for p from X = [XT ,XS], where:

– XS = [µc1
s1
, . . . µcC

sS
], with ci ∈ C and sd ∈ D \ {td},

– XT = [xt1, . . . ,xtn] are the target instances.

• Linear mapping followed by nonlinearities:

– the reconstructed class means µ̂cisd = f (Wµci
sd

),
– the reconstructed unlabeled target examples x̂t = f (Wxt).

• Stack l (we used 5) layers and then concatenate:

– ”class means”: µ̆cisd = [(µci
sd

)>, (µ̂l
ci,sd

)>]>, where µ̂lci,sd = f (Wl µ̂
l−1
ci,sd

) and µ̂0
ci,sd

= µci
sd

,
– ”targets”: x̆lt = [(xt)

>, (x̂lt)
>]>, where x̂lt = f (Wl x̂

l−1
t ) and x̂0

t = xt.

• Predict target labels:

p(c|xt) =
1

Z̆t

∑
d∈D

wsde
(−1

2‖x̆t−µ̆
ci
sd
‖), with : Z̆t =

∑
c′

∑
d

wsde
(−1

2‖x̆t−µ̆
c′
d ‖).

Marginalized Denoising Autoencoder .

Image: Courtesy to M. Chen.

Main idea:

• Inputs x1, . . . ,xm are corrupted m times by random feature removal (dropout)
with the probability p (denoted by x̃ij the jth corrupted version of the input xi).

• Then reconstructed with a linear mapping W by minimizing the loss:

L(W) =
1

2mn

n∑
j=1

m∑
i=1

||xi −Wx̃i,j||2.

• If m → ∞, the corruption can be marginalized out and W expressed in closed
form as W = E[P] E[Q]−1, where:

E[P]ij = Sijqj and E[Q]ij =

[
Sijqiqj, if i 6= j

Sijqi, if i = j
with :

• S = XX> the covariance matrix of the uncorrupted data X,

•X = [x1, . . . ,xm] where xi = [x>i , 1]> for the inputs xi,

• q = [1− p, . . . , 1− p, 1] ∈ Rn+1, n is the feature dimension,

• and p is the noise level (by default 0.5).

Domain Specific Class Means Classifier

Domain specific class means:

µc
d =

1

Nc
d

∑
xi∈Dd∩Cc

xi,

where N c
d is the number of instances from class Cc in the domain. Dd.

Target label prediction:

p(c|xi) =
1

Zi

∑
d∈D

wde
(−1

2‖xi−µ
c
d‖),

where:

•Zi =
∑

c′
∑

dwde
(−1

2‖xi−µ
c′
d ‖) is the normalizer,

•wd are the domain weights (we use wd = 1 for sources and 2 for the target).

Contribution
We assume that only class representatives are available from the sources.

•Can be applied under the privacy concerns, with no access to all source instances
(document images, medical field, etc).

Most domain adaptation (DA) methods needs to exploit the whole source dataset.

Main idea is to combine:

•Domain Specific Class Means (DSCM) classifier [4].

• Stacked Marginalized Denoising Autoencoders (sMDA) [2].
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