

Gabriela Csurka

Boris Chidlovskii

Xerox Research Centre Europe (XRCE) firstname.lastname@xrce.xerox.com

Contribution

We assume that only class representatives are available from the sources.

• Can be applied under the privacy concerns, with no access to all source instances (document images, medical field, etc).

Main idea is to combine:

- Domain Specific Class Means (DSCM) classifier [4].
- Stacked Marginalized Denoising Autoencoders (sMDA) [2].

Proposed Approach

xerox

Stéphane Clinchant

- sMDA framework to compute W for p from $X = [X_T, X_S]$, where:
 - $-\mathbf{X}_S = [\mu_{\mathbf{s}_1}^{\mathbf{c}_1}, \dots, \mu_{\mathbf{s}_S}^{\mathbf{c}_C}], \text{ with } c_i \in C \text{ and } s_d \in D \setminus \{t_d\},$ $-\mathbf{X}_T = [\mathbf{x}_{t_1}, \dots, \mathbf{x}_{t_n}]$ are the target instances.

• Linear mapping followed by nonlinearities:

- the reconstructed class means $\hat{\mu}_{s_d}^{c_i} = f(\mathbf{W}\mu_{\mathbf{s}_d}^{\mathbf{c}_i})$,
- the reconstructed unlabeled target examples $\hat{\mathbf{x}}_t = f(\mathbf{W}\mathbf{x}_t)$.

• Stack *l* (we used 5) layers and then concatenate:

StarTribune

Domain Specific Class Means Classifier

Domain specific class means:

 $\mu_{\mathbf{d}}^{\mathbf{c}} = \frac{\mathbf{I}}{\mathbf{N}_{\mathbf{d}}^{\mathbf{c}}} \sum_{\mathbf{x} \in \mathcal{D} \cap \mathcal{C}} \mathbf{x}_{\mathbf{i}},$

where N_d^c is the number of instances from class C_c in the domain. D_d .

Target label prediction:

 $p(c|\mathbf{x}_i) = \frac{1}{Z_i} \sum_{d \in D} w_d e^{(-\frac{1}{2} \|\mathbf{x}_i - \boldsymbol{\mu}_{\mathbf{d}}^{\mathbf{c}}\|)},$

where:

• w_d are the domain weights (we use $w_d = 1$ for sources and 2 for the target).

- "class means": $\check{\mu}_{s_d}^{c_i} = [(\mu_{\mathbf{s}_d}^{\mathbf{c}_i})^\top, (\hat{\mu}_{\mathbf{c}_i,\mathbf{s}_d}^{\mathbf{l}})^\top]^\top$, where $\hat{\mu}_{c_i,s_d}^l = f(\mathbf{W}_l \; \hat{\mu}_{c_i,s_d}^{l-1})$ and $\hat{\mu}_{c_i,s_d}^0 = \mu_{\mathbf{s}_d}^{\mathbf{c}_i}$, - "targets": $\mathbf{\tilde{x}}_t^l = [(\mathbf{x}_t)^\top, (\hat{\mathbf{x}}_t^l)^\top]^\top$, where $\hat{\mathbf{x}}_t^l = f(\mathbf{W}_l \ \hat{\mathbf{x}}_t^{l-1})$ and $\hat{\mathbf{x}}_t^0 = \mathbf{x}_t$.

• Predict target labels:

$$p(c|\mathbf{x}_t) = \frac{1}{\breve{\mathbf{Z}}_t} \sum_{d \in D} w_{s_d} e^{(-\frac{1}{2}\|\breve{\mathbf{x}}_t - \breve{\mu}_{s_d}^{c_i}\|)}, \quad \text{with}: \quad \breve{\mathbf{Z}}_t = \sum_{c'} \sum_d w_{s_d} e^{(-\frac{1}{2}\|\breve{\mathbf{x}}_t - \breve{\mu}_d^{c'}\|)}.$$

Experimental validation

Results on Office+Caltech10 [12] with SURF BOV:

• Semi-supervised scenario with the evaluation framework [8].

• ACM used with p = 0.5, l = 5 and f = tanh.

Method	C→A	$D {\rightarrow} A$	$W {\rightarrow} A$	$A \rightarrow C$	$D\!\rightarrow\!C$	$W \!\rightarrow\! \! C$	$A {\rightarrow} D$	$C {\rightarrow} D$	$W {\rightarrow} D$	$A {\rightarrow} W$	$C {\rightarrow} W$	$D {\rightarrow} W$	Avg
ACM	52.4	50.1	50.3	37.3	37.5	36.8	58.9	59.7	63	68.1	69.6	75.2	55.3
GFK [8]	46.1	46.2	32.1	39.6	33.9	32.1	50.9	55	74.1	56.9	57	74.6	49.8
SA [5]	45.3	45.8	44.8	38.4	35.8	34.1	55.1	56.6	82.3	60.3	60.7	84.8	53.7
MMDT [9]	49.4	46.9	47.7	36.4	34.1	32.2	56.7	56.5	67	64.6	63.8	74.1	52.5
MLDSCM [4]	50.6	48.8	48.4	34.9	34.2	33.4	62.1	61.6	64.7	66.1	65.1	71.5	53.5
DIP-CC [1]	61.8	56.9	53.4	47.8	44.2	43.6	67.5	65.8	92.6	72.5	69.9	89.1	63.7

Results on Office 31 [8] using deep CNN network:

- Unsupervised scenario using the evaluation framework [8].
- ACM used with fc6 [10], p = 0.5, l = 5 and f(u) = max(0, u) (RELU).

Method	A→W	$D \rightarrow W$	$W \rightarrow D$	Avg
ACM	67.5	92.9	94.1	84.8
SA [6]	47.2	91.8	92.4	77.1
CORAL [13]	48.4	96.5	99.2	81.4

Conclusion

We proposed a method that is:

• Simple and still powerful method with low computational cost. • Requires only class means/prototypes from the source domains. • Has only a few parameters (p, l, f) with reasonable default values. Its advantages are:

• Can exploit multiple sources in both US and SS scenarios. • Remains competitive with most existing methods.

• Can handle larger set of real scenarios (e.g. privacy issues).

References

- [1] M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann. Unsupervised domain adaptation by domain invariant projection. In ICCV, 2013.
- [2] M. Chen, Z. Xu, K. Q. Weinberger, and F. Sha. Marginalized denoising autoencoders for domain adaptation. ICML, arXiv:1206.4683, 2012.
- [3] S. Chopra, S. Balakrishnan, and R. Gopalan. DLID: Deep learning for domain adaptation by interpolating between

STAT A

Ž?**T**?

Marginalized Denoising Autoencoder

Image: Courtesy to M. Chen.

Main idea:

 $\mathcal{L}(\mathbf{W}) = \frac{1}{2mn} \sum_{j=1}^{n} \sum_{i=1}^{m} ||\mathbf{x}_i - \mathbf{W} \mathbf{\tilde{x}}_{i,j}||^2.$

• If $m \to \infty$, the corruption can be marginalized out and W expressed in closed

 $\mathbb{E}[\mathbf{P}]_{ij} = \mathbf{S}_{ij}q_j \quad \text{and} \quad \mathbb{E}[\mathbf{Q}]_{ij} = \begin{vmatrix} \mathbf{S}_{ij}q_iq_j, & \text{if} & i \neq j \\ \mathbf{S}_{ij}q_i, & \text{if} & i = j \end{vmatrix} \quad \text{with}:$

• Then reconstructed with a linear mapping W by minimizing the loss:

form as $\mathbf{W} = \mathbb{E}[\mathbf{P}] \mathbb{E}[\mathbf{Q}]^{-1}$, where:

- domains. In ICML, 2013.
- [4] G. Csurka, B. Chidlovskii, and F. Perronnin. Domain adaptation with a domain specific class means classifier. In TASK-CV, ECCV workshop, 2014.
- [5] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adaptation using subspace alignment. In *ICCV*, 2013.
- [6] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Subspace alignment for domain adaptation. CoRR, arXiv:1409.5241, 2014.
- [7] Y. Ganin and V.S. Lempitsky. Unsupervised domain adaptation by backpropagation. CORR, 1409.7495, 2015.
- [8] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012.
- [9] J. Hoffman, E. Rodner & J. Donhua & T. Darrell, and K. Saenko. Efficient learning of domain-invariant image representations. In ICLR, 2013.
- [10] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. ImageNet classification with deep convolutional neural networks. In *NIPS*, 2012.
- [11] M. Long, Y. Cao, , J. Wang, and M. Jordan. Learning transferable features with deep adaptation networks. In ICML, 2015. [12] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, 2010. [13] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. *CORR*, arXiv:1511.05547, 2015.
- [14] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion: Maximizing for domain invariance. *CoRR*, arXiv:1412.3474, 2014.

