Adapting Deep Networks Across Domains, Modalities, and Tasks

Judy Hoffman

Eric Tzeng

Saurabh Gupta

Trevor Darrell

Recent Visual Recognition Progress

Recent Visual Recognition Progress

Deep Visual Models

[Krizhevsky 2012]

[LeCuN 89, 98]

[Szegedy 2014] [Simonyan 2014]

Deep Visual Models

[Krizhevsky 2012]

[LeCuN 89, 98]

[Szegedy 2014] [Simonyan 2014]

Source Domain $\sim P_S(X, Y)$

lots of **labeled** data

$$D_S = \{(\mathbf{x}_i, y_i), \forall i \in \{1, \dots, N\}\}$$

Source Domain $\sim P_S(X, Y)$

 \neq

lots of **labeled** data

$$D_S = \{(\mathbf{x}_i, y_i), \forall i \in \{1, \dots, N\}\}$$

Target Domain $\sim P_T(Z, H)$ unlabeled or limited labels

$$D_T = \{ (\mathbf{z}_j, ?), \forall j \in \{1, \dots, M\} \}$$

Source Domain $\sim P_S(X, Y)$

lots of **labeled** data

$$\neq$$

Target Domain $\sim P_T(Z, H)$ unlabeled or limited labels

$$D_S = \{(\mathbf{x}_i, y_i), \forall i \in \{1, \dots, N\}\}$$

$$D_T = \{ (\mathbf{z}_j, \mathbf{?}), \forall j \in \{1, \dots, M\} \}$$

Prior work: domain adaptation

- Minimizing distribution distance
 - Borgwardt`06, Mansour`09, Pan`09, Fernando`13

- Deep model adaptation
 - Chopra`13, Tzeng`14, Long`15, Ganin`15

$$\min_{\theta_{\text{repr}}} \mathcal{L}_{\text{conf}}(x, z, \theta_D; \theta_{\text{repr}}) = \sum_{x_i \in S} H(\mathcal{U}(D), q_i^s) + \sum_{z_j \in T} H(\mathcal{U}(D), q_j^t)$$

$$\min_{\theta_{\text{repr}}} \mathcal{L}_{\text{conf}}(x, z, \theta_D; \theta_{\text{repr}}) = \sum_{x_i \in S} H(\mathcal{U}(D), q_i^s) + \sum_{z_j \in T} H(\mathcal{U}(D), q_j^t)$$

$$\min_{\theta_{\text{repr}}} \mathcal{L}_{\text{conf}}(x, z, \theta_D; \theta_{\text{repr}}) = \sum_{x_i \in S} H(\mathcal{U}(D), q_i^s) + \sum_{z_j \in T} H(\mathcal{U}(D), q_j^t)$$

 $\min_{\theta_{\text{repr}}} \mathcal{L}_{\text{conf}}(x, z, \theta_D; \theta_{\text{repr}}) = \sum_{i} H(\mathcal{U}(D), q_i^s) + \sum_{i} H(\mathcal{U}(D), q_j^t)$ $x_i \in S$ $z_j \in T$

[ICCV 2015]

[ICCV 2015]

[ICCV 2015]

[ICCV 2015]

Verify confusion

Source Domain $\sim P_S(X, Y)$

lots of **labeled** data

$$\neq$$

Target Domain $\sim P_T(Z, H)$ unlabeled or limited labels

$$D_S = \{(\mathbf{x}_i, y_i), \forall i \in \{1, \dots, N\}\}$$

$$D_T = \{ (\mathbf{z}_j, \mathbf{?}), \forall j \in \{1, \dots, M\} \}$$

lots of **labeled** data

$$D_S = \{(\mathbf{x}_i, y_i), \forall i \in \{1, \dots, N\}\}$$

Target Domain $\sim P_T(Z, H)$ unlabeled or limited labels

$$D_T = \{ (\mathbf{z}_j, ?), \forall j \in \{1, \dots, M\} \}$$

 $H(h,p) = E_h[-\log p]$

 $H(h, \mathbf{p}) = E_h[-\log p]$

 $H(h, p) = E_h[-\log p]$

Source Softlabels

 $H(h, p) = E_h[-\log p]$

Class correlation transfer loss

 $H(h,p) = E_h[-\log p]$

Class correlation transfer loss

Class correlation transfer loss

Office dataset Experiment

- all classes have source labeled examples
- 15 classes have target labeled examples
- evaluate on remaining 16 classes

3 domains

[saenko`10]

Office dataset Experiment

	$A \to W$	$A \rightarrow D$	$D \to A$	$D \to W$	$W \to A$	$W \to D$	Average
MMDT [18]	_	44.6 ± 0.3	_	_	_	58.3 ± 0.5	_
Source CNN	54.2 ± 0.6	63.2 ± 0.4	36.4 ± 0.1	89.3 ± 0.5	34.7 ± 0.1	94.5 ± 0.2	62.0
Ours: dom confusion only	55.2 ± 0.6	63.7 ± 0.9	41.2 ± 0.1	$\textbf{91.3} \pm \textbf{0.4}$	$\textbf{41.1} \pm \textbf{0.0}$	96.5 ± 0.1	64.8
Ours: soft labels only	56.8 ± 0.4	65.2 ± 0.9	41.7 ± 0.3	89.6 ± 0.1	38.8 ± 0.4	96.5 ± 0.2	64.8
Ours: dom confusion+soft labels	$\textbf{59.3} \pm \textbf{0.6}$	68.0±0.5	$\textbf{43.1}{\pm 0.2}$	$90.0{\pm}~0.2$	$40.5 {\pm} 0.2$	97.5± 0.1	66.4

Multiclass accuracy over 16 classes which lack target labels

Cross-dataset Experiment Setup

Source: ImageNet

Target: Caltech256

40 categories

Evaluate adaptation performance with 0,1,3,5 target labeled examples per class

[tommasi`14]

ImageNet adapted to Caltech

[ICCV 2015]

Summary: simultaneous transfer across domains and tasks

Domain confusion aligns the distributions

Softlabels transfer class correlations

Paper presented in poster session Wednesday 12/16 4B

Discrepancy due to modality shift

System uses model

Label space discrepancy

lamp bed pillow night-stand

Current output

[NIPS 2014, CVPR 2015]

Label space discrepancy

lamp bed pillow night-stand

Desired output

Adapting Deep Visual Models

Adapting across domains

Adapting across tasks

lamp bed pillow night-stand

Adapting across modalities

Error bounds on adapted deep models

Generally applicable to adaptation with deep learning in AI

Thank you.