
Adapting Deep Networks Across
Domains, Modalities, and Tasks

Judy Hoffman!

Eric Tzeng Saurabh Gupta Kate Saenko Trevor Darrell

2010 2011 2012 2013 2014
70

75

80

85

90

95

100

Recent Visual Recognition Progress

ImageNet Performance

Ac
cu

ra
cy

2010 2011 2012 2013 2014
70

75

80

85

90

95

100

Recent Visual Recognition Progress

ImageNet Performance

Ac
cu

ra
cy

Deep models

Deep Visual Models

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

[Krizhevsky 2012]

[LeCuN 89, 98]

[Simonyan 2014][Szegedy 2014]

[Hubel and Wisel 59]

Deep Visual Models

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

[Krizhevsky 2012]

[LeCuN 89, 98]

[Simonyan 2014][Szegedy 2014]

[Hubel and Wisel 59]

Domain Adaptation: Train on source adapt to target

backpack chair bike

Source Domain
lots of labeled data

⇠ PS(X,Y)

DS = {(xi, yi), 8i 2 {1, . . . , N}}

Domain Adaptation: Train on source adapt to target

backpack chair bike

Source Domain
lots of labeled data

⇠ PS(X,Y)

DS = {(xi, yi), 8i 2 {1, . . . , N}}

bike??

Target Domain
unlabeled or limited labels

⇠ PT (Z,H)

?DT = {(zj ,), 8j 2 {1, . . . ,M}}

Domain Adaptation: Train on source adapt to target

backpack chair bike

Adapt

Source Domain
lots of labeled data

⇠ PS(X,Y)

DS = {(xi, yi), 8i 2 {1, . . . , N}}

bike??

Target Domain
unlabeled or limited labels

⇠ PT (Z,H)

?DT = {(zj ,), 8j 2 {1, . . . ,M}}

Prior work: domain adaptation

• Minimizing distribution distance

• Borgwardt`06, Mansour`09, Pan`09, Fernando`13
!

• Deep model adaptation

• Chopra`13, Tzeng`14, Long`15, Ganin`15

Adapting across domains minimize discrepancy

[ICCV 2015]

min
✓repr

L
conf

(x, z, ✓
D

; ✓
repr

) =
X

xi2S

H(U(D), qs
i

) +
X

zj2T

H(U(D), qt
j

)

Adapting across domains minimize discrepancy

[ICCV 2015]

min
✓repr

L
conf

(x, z, ✓
D

; ✓
repr

) =
X

xi2S

H(U(D), qs
i

) +
X

zj2T

H(U(D), qt
j

)

xi

Adapting across domains minimize discrepancy

[ICCV 2015]

min
✓repr

L
conf

(x, z, ✓
D

; ✓
repr

) =
X

xi2S

H(U(D), qs
i

) +
X

zj2T

H(U(D), qt
j

)

✓c
object

classifier
xi

Adapting across domains minimize discrepancy

[ICCV 2015]

min
✓repr

L
conf

(x, z, ✓
D

; ✓
repr

) =
X

xi2S

H(U(D), qs
i

) +
X

zj2T

H(U(D), qt
j

)

✓c
object

classifier
xi

✓
xi

yi✓Txi � 1
zj

hj✓Tzj � 1

1

Adapting across domains minimize discrepancy

[ICCV 2015]

min
✓repr

L
conf

(x, z, ✓
D

; ✓
repr

) =
X

xi2S

H(U(D), qs
i

) +
X

zj2T

H(U(D), qt
j

)

✓c
object

classifier
xi

✓
xi

yi✓Txi � 1
zj

hj✓Tzj � 1

1

Discrepency

Adapting across domains minimize discrepancy

[ICCV 2015]

min
✓repr

L
conf

(x, z, ✓
D

; ✓
repr

) =
X

xi2S

H(U(D), qs
i

) +
X

zj2T

H(U(D), qt
j

)

✓c
object

classifier
xi

✓
xi

yi✓Txi � 1
zj

hj✓Tzj � 1

1

✓D
domain

classifier

Adapting across domains minimize discrepancy

[ICCV 2015]

min
✓repr

L
conf

(x, z, ✓
D

; ✓
repr

) =
X

xi2S

H(U(D), qs
i

) +
X

zj2T

H(U(D), qt
j

)

xi

✓
xi

yi✓Txi � 1
zj

hj✓Tzj � 1

1

qtj = [0, 1]

qsi = [1, 0]

✓D
domain

classifier

Adapting across domains minimize discrepancy

[ICCV 2015]

min
✓repr

L
conf

(x, z, ✓
D

; ✓
repr

) =
X

xi2S

H(U(D), qs
i

) +
X

zj2T

H(U(D), qt
j

)

xi

zj

✓D
domain

classifier

Cross-entropy with uniform distribution

Adapting across domains minimize discrepancy

[ICCV 2015]

min
✓repr

L
conf

(x, z, ✓
D

; ✓
repr

) =
X

xi2S

H(U(D), qs
i

) +
X

zj2T

H(U(D), qt
j

)
✓

xi

yi✓Txi � 1
zj

hj✓Tzj � 1

1

xi
✓D

domain
classifier

Adapting across domains minimize discrepancy

[ICCV 2015]

min
✓repr

L
conf

(x, z, ✓
D

; ✓
repr

) =
X

xi2S

H(U(D), qs
i

) +
X

zj2T

H(U(D), qt
j

)
✓

xi

yi✓Txi � 1
zj

hj✓Tzj � 1

1

xi

✓c
object

classifier

Source Data

backpack chair bike

fc8conv1 conv5
source data

fc6 fc7 classification
loss

Adapting across domains minimize discrepancy

Source Data

backpack chair bike

Target Databackpack

?

fc8conv1 conv5 fc6 fc7

labeled target data

fc8conv1 conv5
source data

fc6 fc7

classification
losssh

ar
ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

Adapting across domains minimize discrepancy

Source Data

backpack chair bike

Target Databackpack

?

fc8conv1 conv5 fc6 fc7 all
 ta

rg
et

 d
at

a

source data

labeled target data

fc8conv1 conv5
source data

fcD

fc6 fc7

classification
loss

domain
confusion

loss

domain
classifier

loss

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

Adapting across domains minimize discrepancy

Verify confusion

Domain Adaptation: Train on source adapt to target

backpack chair bike

Adapt

Source Domain
lots of labeled data

⇠ PS(X,Y)

DS = {(xi, yi), 8i 2 {1, . . . , N}}

bike??

Target Domain
unlabeled or limited labels

⇠ PT (Z,H)

?DT = {(zj ,), 8j 2 {1, . . . ,M}}

Domain Adaptation: Train on source adapt to target

backpack chair bike

Adapt

Source Domain
lots of labeled data

⇠ PS(X,Y)

DS = {(xi, yi), 8i 2 {1, . . . , N}}

bike??

Target Domain
unlabeled or limited labels

⇠ PT (Z,H)

?DT = {(zj ,), 8j 2 {1, . . . ,M}}

Standard supervised deep loss

[ICCV 2015]

H(h, p) = Eh[� log p]

[ICCV 2015]

H(h, p) = Eh[� log p]

pj

Standard supervised deep loss

BottleMugChair
Laptop

Keyboard

✓
xi

yi✓Txi � 1
zj

hj✓Tzj � 1

1

fc8conv1 conv5 fc6 fc7

[ICCV 2015]

H(h, p) = Eh[� log p]

pj

BottleMug Chair
Laptop

Keyboard

hjbottle

Standard supervised deep loss

BottleMugChair
Laptop

Keyboard

✓
xi

yi✓Txi � 1
zj

hj✓Tzj � 1

1

fc8conv1 conv5 fc6 fc7

Source
CNN

Source
CNN

Source
CNN

Bottle Mug Chair
Laptop

Keyboard

Bottle Mug Chair
Laptop

Keyboard

Bottle Mug Chair
Laptop

Keyboard

Bottle Mug Chair
Laptop

Keyboard

+

softmax
high
temp

softmax
high
temp

softmax
high
temp

Source Softlabels

source bottle
examples

[ICCV 2015]

H(h, p) = Eh[� log p]

pj

bottle

Standard supervised deep loss

BottleMugChair
Laptop

Keyboard

✓
xi

yi✓Txi � 1
zj

hj✓Tzj � 1

1

fc8conv1 conv5 fc6 fc7

BottleMug Chair
Laptop

Keyboard

hj

Class correlation transfer loss

[ICCV 2015]

H(h, p) = Eh[� log p]

pj

BottleMugChair
Laptop

Keyboard

✓
xi

yi✓Txi � 1
zj

hj✓Tzj � 1

1

fc8conv1 conv5 fc6 fc7

bottle

source softlabel

Bottle Mug Chair
Laptop

Keyboard

hj

Source Data

backpack chair bike

Target Databackpack

?

fc8conv1 conv5 fc6 fc7 all
 ta

rg
et

 d
at

a

source data

labeled target data

fc8conv1 conv5
source data

fcD

fc6 fc7

classification
loss

domain
confusion

loss

domain
classifier

loss

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

Class correlation transfer loss

Source Data

backpack chair bike

Target Databackpack

?

fc8conv1 conv5 fc6 fc7

Source softlabels

all
 ta

rg
et

 d
at

a

source data

labeled target data

fc8conv1 conv5
source data

softmax
high temp

softlabel
loss

fcD

fc6 fc7

classification
loss

domain
confusion

loss

domain
classifier

loss

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

Class correlation transfer loss

Office dataset Experiment Adapting Visual Category Models to New Domains 9

31 categories
� �� �

keyboardheadphonesfile cabinet... laptop letter tray ...

amazon dSLR webcam

...

in
st

an
ce

 1
in

st
an

ce
 2

...

...

...

in
st

an
ce

 5

...

in
st

an
ce

 1
in

st
an

ce
 2

...

...

...

in
st

an
ce

 5

...

� �� �
3 domains

Fig. 4. New dataset for investigating domain shifts in visual category recognition tasks.
Images of objects from 31 categories are downloaded from the web as well as captured
by a high definition and a low definition camera.

popular way to acquire data, as it allows for easy access to large amounts of
data that lends itself to learning category models. These images are of products
shot at medium resolution typically taken in an environment with studio lighting
conditions. We collected two datasets: amazon contains 31 categories4 with an
average of 90 images each. The images capture the large intra-class variation of
these categories, but typically show the objects only from a canonical viewpoint.
amazonINS contains 17 object instances (e.g. can of Taster’s Choice instant
co↵ee) with an average of two images each.

Images from a digital SLR camera: The second domain consists of im-
ages that are captured with a digital SLR camera in realistic environments with
natural lighting conditions. The images have high resolution (4288x2848) and
low noise. We have recorded two datasets: dslr has images of the 31 object cat-

4 The 31 categories in the database are: backpack, bike, bike helmet, bookcase, bottle,
calculator, desk chair, desk lamp, computer, file cabinet, headphones, keyboard, lap-
top, letter tray, mobile phone, monitor, mouse, mug, notebook, pen, phone, printer,
projector, puncher, ring binder, ruler, scissors, speaker, stapler, tape, and trash can.

• all classes have
source labeled
examples

• 15 classes have
target labeled
examples

• evaluate on remaining
16 classes

[saenko`10]

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

ICCV
#937

ICCV
#937

ICCV 2015 Submission #937. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A ! W A ! D D ! A D ! W W ! A W ! D Average

DLID [7] 51.9 – – 78.2 – 89.9 –
DeCAF6 S+T [9] 80.7 ± 2.3 – – 94.8 ± 1.2 – – –
DaNN [13] 53.6 ± 0.2 – – 71.2 ± 0.0 – 83.5 ± 0.0 –
Source CNN 56.5 ± 0.3 64.6 ± 0.4 47.6 ± 0.1 92.4 ± 0.3 42.7 ± 0.1 93.6 ± 0.2 66.22
Target CNN 80.5 ± 0.5 81.8 ± 1.0 59.9 ± 0.3 80.5 ± 0.5 59.9 ± 0.3 81.8 ± 1.0 74.05
Source+Target CNN 82.5 ± 0.9 85.2 ± 1.1 65.8 ± 0.5 93.9 ± 0.5 65.2 ± 0.7 96.3 ± 0.5 81.50

Ours: dom confusion only 82.8 ± 0.9 85.9 ± 1.1 66.2 ± 0.4 95.6 ± 0.4 64.9 ± 0.5 97.5 ± 0.2 82.13
Ours: soft labels only 82.7 ± 0.7 84.9 ± 1.2 66.0 ± 0.5 95.9 ± 0.6 65.2 ± 0.6 98.3 ± 0.3 82.17
Ours: dom confusion+soft labels 82.7 ± 0.8 86.1 ± 1.2 66.2 ± 0.3 95.7 ± 0.5 65.0 ± 0.5 97.6 ± 0.2 82.22

Table 1. Multi-class accuracy evaluation on the standard supervised adaptation setting with the Office dataset. We evaluate on all 31 categories
using the standard experimental protocol from [28]. Here, we compare against three state-of-the-art domain adaptation methods as well as a
CNN trained using only source data, only target data, or both source and target data together.

A ! W A ! D D ! A D ! W W ! A W ! D Average

MMDT [18] – 44.6 ± 0.3 – – – 58.3 ± 0.5 –
Source CNN 54.2 ± 0.6 63.2 ± 0.4 36.4 ± 0.1 89.3 ± 0.5 34.7 ± 0.1 94.5 ± 0.2 62.0

Ours: dom confusion only 55.2 ± 0.6 63.7 ± 0.9 41.2 ± 0.1 91.3 ± 0.4 41.1 ± 0.0 96.5 ± 0.1 64.8
Ours: soft labels only 56.8 ± 0.4 65.2 ± 0.9 41.7 ± 0.3 89.6 ± 0.1 38.8 ± 0.4 96.5 ± 0.2 64.8
Ours: dom confusion+soft labels 59.3 ±0.6 68.0±0.5 43.1± 0.2 90.0± 0.2 40.5±0.2 97.5± 0.1 66.4

Table 2. Multi-class accuracy evaluation on the standard semi-supervised adaptation setting with the Office dataset. We evaluate on 16
held-out categories for which we have no access to target labeled data. We show results on these unsupervised categories for the source only
model, our model trained using only soft labels for the 15 auxiliary categories, and finally using domain confusion together with soft labels
on the 15 auxiliary categories.

target domain. We report accuracies on the remaining un-
labeled images, following the standard protocol introduced
with the dataset [28]. In addition to a variety of baselines, we
report numbers for both soft label fine-tuning alone as well
as soft labels with domain confusion in Table 1. Because the
Office dataset is imbalanced, we report multi-class accura-
cies, which are obtained by computing per-class accuracies
independently, then averaging over all 31 categories.

We see that fine-tuning with soft labels or domain con-
fusion provides a consistent improvement over hard label
training in 5 of 6 shifts. Combining soft labels with do-
main confusion produces marginally higher performance on
average. This result follows the intuitive notion that when
enough target labeled examples are present, directly opti-
mizing for the joint source and target classification objective
(Source+Target CNN) is a strong baseline and so using ei-
ther of our new losses adds enough regularization to improve
performance.

Next, we experiment with the semi-supervised adaptation
setting. We consider the case in which training data and
labels are available for some, but not all of the categories in
the target domain. We are interested in seeing whether we
can transfer information learned from the labeled classes to
the unlabeled classes.

To do this, we consider having 10 target labeled exam-
ples per category from only 15 of the 31 total categories,

following the standard protocol introduced with the Office
dataset [28]. We then evaluate our classification performance
on the remaining 16 categories for which no data was avail-
able at training time.

In Table 2 we present multi-class accuracies over the 16
held-out categories and compare our method to a previous
domain adaptation method [18] as well as a source-only
trained CNN. Note that, since the performance here is com-
puted over only a subset of the categories in the dataset, the
numbers in this table should not be directly compared to the
supervised setting in Table 1.

We find that all variations of our method (only soft label
loss, only domain confusion, and both together) outperform
the baselines. Contrary to the fully supervised case, here we
note that both domain confusion and soft labels contribute
significantly to the overall performance improvement of our
method. This stems from the fact that we are now evaluat-
ing on categories which lack labeled target data, and thus
the network can not implicitly enforce domain invariance
through the classification objective alone. Separately, the
fact that we get improvement from the soft label training on
related tasks indicates that information is being effectively
transferred between tasks.

In Figure 5, we show examples for the
Amazon!Webcam shift where our method correctly
classifies images from held out object categories and the

6

Office dataset Experiment

Multiclass accuracy over 16 classes which lack target labels

back
packbike

bike
 helmet

bookca
se
bottle

calcu
lator

desk
chair

desk
lamp

deskt
op co

mputer

file
 ca

binet

headphones

keyboard

laptop co
mputer

letter tr
ay

mobile phone
monitor

mousemug

paper notebookpen
phone

printer

projecto
r

punchers

ring binder
ruler

sci
sso

rs

speaker
sta

pler

tape disp
enser

trash ca
n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Ours soft label

back
packbike

bike
 helmet

bookca
se
bottle

calcu
lator

desk
chair

desk
lamp

deskt
op co

mputer

file
 ca

binet

headphones

keyboard

laptop co
mputer

letter tr
ay

mobile phone
monitor

mousemug

paper notebookpen
phone

printer

projecto
r

punchers

ring binder
ruler

sci
sso

rs

speaker
sta

pler

tape disp
enser

trash ca
n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Baseline soft label

ring binder
monitor

Baseline soft activation

Our soft activation

Target test image

back pack bike bike helmet

bookcase bottle calculator

desk chair desk lamp desktop computer

file cabinet headphones keyboard

laptop computer letter tray mobile phone

Source soft labels

Cross-dataset Experiment Setup

Source: ImageNet
!
Target: Caltech256
!
40 categories
!
Evaluate adaptation performance with 0,1,3,5
target labeled examples per class

[tommasi`14]

ImageNet adapted to Caltech

Number Labeled Target Examples per Category
0 1 3 5

M
ul

ti-
cl

as
s

Ac
cu

ra
cy

72

73

74

75

76

77

78

Source+Target CNN
Ours: softlabels only
Ours: dom confusion+softlabels

[ICCV 2015]

400 120 200
Number of labeled target examples

M
ul

tic
la

ss
 A

cc
ur

ac
y

Summary: simultaneous transfer
across domains and tasks

Domain confusion aligns the distributions

Softlabels transfer class correlations

Paper presented in poster session Wednesday 12/16 4B

System uses model

Discrepancy due to modality shift

Lots of data to train models

RGB

lamp

pillow

bed

night-stand

Current output

System uses model

lamp bednight-stand

[NIPS 2014, CVPR 2015]

Label space discrepancy

lamp

pillow

bed

night-stand

Desired output

System uses model

lamp bednight-stand

[NIPS 2014, CVPR 2015]

Label space discrepancy

Adapting Deep Visual Models
Adapting across domains

Adapting across tasks

Adapting across modalities

Error bounds on adapted deep models

lamp

pillow
bed

night-stand

Generally applicable to adaptation with deep learning in AI

Thank you.

