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Deep Visual Models

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Prior work: domain adaptation

• Minimizing distribution distance 

• Borgwardt`06, Mansour`09, Pan`09, Fernando`13 
!

• Deep model adaptation 

• Chopra`13, Tzeng`14, Long`15, Ganin`15
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Office dataset Experiment Adapting Visual Category Models to New Domains 9

31 categories
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Fig. 4. New dataset for investigating domain shifts in visual category recognition tasks.
Images of objects from 31 categories are downloaded from the web as well as captured
by a high definition and a low definition camera.

popular way to acquire data, as it allows for easy access to large amounts of
data that lends itself to learning category models. These images are of products
shot at medium resolution typically taken in an environment with studio lighting
conditions. We collected two datasets: amazon contains 31 categories4 with an
average of 90 images each. The images capture the large intra-class variation of
these categories, but typically show the objects only from a canonical viewpoint.
amazonINS contains 17 object instances (e.g. can of Taster’s Choice instant
co↵ee) with an average of two images each.

Images from a digital SLR camera: The second domain consists of im-
ages that are captured with a digital SLR camera in realistic environments with
natural lighting conditions. The images have high resolution (4288x2848) and
low noise. We have recorded two datasets: dslr has images of the 31 object cat-

4 The 31 categories in the database are: backpack, bike, bike helmet, bookcase, bottle,
calculator, desk chair, desk lamp, computer, file cabinet, headphones, keyboard, lap-
top, letter tray, mobile phone, monitor, mouse, mug, notebook, pen, phone, printer,
projector, puncher, ring binder, ruler, scissors, speaker, stapler, tape, and trash can.

• all classes have 
source labeled 
examples 

• 15 classes have 
target labeled 
examples 

• evaluate on remaining 
16 classes

[saenko`10]
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A ! W A ! D D ! A D ! W W ! A W ! D Average

DLID [7] 51.9 – – 78.2 – 89.9 –
DeCAF6 S+T [9] 80.7 ± 2.3 – – 94.8 ± 1.2 – – –
DaNN [13] 53.6 ± 0.2 – – 71.2 ± 0.0 – 83.5 ± 0.0 –
Source CNN 56.5 ± 0.3 64.6 ± 0.4 47.6 ± 0.1 92.4 ± 0.3 42.7 ± 0.1 93.6 ± 0.2 66.22
Target CNN 80.5 ± 0.5 81.8 ± 1.0 59.9 ± 0.3 80.5 ± 0.5 59.9 ± 0.3 81.8 ± 1.0 74.05
Source+Target CNN 82.5 ± 0.9 85.2 ± 1.1 65.8 ± 0.5 93.9 ± 0.5 65.2 ± 0.7 96.3 ± 0.5 81.50

Ours: dom confusion only 82.8 ± 0.9 85.9 ± 1.1 66.2 ± 0.4 95.6 ± 0.4 64.9 ± 0.5 97.5 ± 0.2 82.13
Ours: soft labels only 82.7 ± 0.7 84.9 ± 1.2 66.0 ± 0.5 95.9 ± 0.6 65.2 ± 0.6 98.3 ± 0.3 82.17
Ours: dom confusion+soft labels 82.7 ± 0.8 86.1 ± 1.2 66.2 ± 0.3 95.7 ± 0.5 65.0 ± 0.5 97.6 ± 0.2 82.22

Table 1. Multi-class accuracy evaluation on the standard supervised adaptation setting with the Office dataset. We evaluate on all 31 categories
using the standard experimental protocol from [28]. Here, we compare against three state-of-the-art domain adaptation methods as well as a
CNN trained using only source data, only target data, or both source and target data together.

A ! W A ! D D ! A D ! W W ! A W ! D Average

MMDT [18] – 44.6 ± 0.3 – – – 58.3 ± 0.5 –
Source CNN 54.2 ± 0.6 63.2 ± 0.4 36.4 ± 0.1 89.3 ± 0.5 34.7 ± 0.1 94.5 ± 0.2 62.0

Ours: dom confusion only 55.2 ± 0.6 63.7 ± 0.9 41.2 ± 0.1 91.3 ± 0.4 41.1 ± 0.0 96.5 ± 0.1 64.8
Ours: soft labels only 56.8 ± 0.4 65.2 ± 0.9 41.7 ± 0.3 89.6 ± 0.1 38.8 ± 0.4 96.5 ± 0.2 64.8
Ours: dom confusion+soft labels 59.3 ±0.6 68.0±0.5 43.1± 0.2 90.0± 0.2 40.5±0.2 97.5± 0.1 66.4

Table 2. Multi-class accuracy evaluation on the standard semi-supervised adaptation setting with the Office dataset. We evaluate on 16
held-out categories for which we have no access to target labeled data. We show results on these unsupervised categories for the source only
model, our model trained using only soft labels for the 15 auxiliary categories, and finally using domain confusion together with soft labels
on the 15 auxiliary categories.

target domain. We report accuracies on the remaining un-
labeled images, following the standard protocol introduced
with the dataset [28]. In addition to a variety of baselines, we
report numbers for both soft label fine-tuning alone as well
as soft labels with domain confusion in Table 1. Because the
Office dataset is imbalanced, we report multi-class accura-
cies, which are obtained by computing per-class accuracies
independently, then averaging over all 31 categories.

We see that fine-tuning with soft labels or domain con-
fusion provides a consistent improvement over hard label
training in 5 of 6 shifts. Combining soft labels with do-
main confusion produces marginally higher performance on
average. This result follows the intuitive notion that when
enough target labeled examples are present, directly opti-
mizing for the joint source and target classification objective
(Source+Target CNN) is a strong baseline and so using ei-
ther of our new losses adds enough regularization to improve
performance.

Next, we experiment with the semi-supervised adaptation
setting. We consider the case in which training data and
labels are available for some, but not all of the categories in
the target domain. We are interested in seeing whether we
can transfer information learned from the labeled classes to
the unlabeled classes.

To do this, we consider having 10 target labeled exam-
ples per category from only 15 of the 31 total categories,

following the standard protocol introduced with the Office
dataset [28]. We then evaluate our classification performance
on the remaining 16 categories for which no data was avail-
able at training time.

In Table 2 we present multi-class accuracies over the 16
held-out categories and compare our method to a previous
domain adaptation method [18] as well as a source-only
trained CNN. Note that, since the performance here is com-
puted over only a subset of the categories in the dataset, the
numbers in this table should not be directly compared to the
supervised setting in Table 1.

We find that all variations of our method (only soft label
loss, only domain confusion, and both together) outperform
the baselines. Contrary to the fully supervised case, here we
note that both domain confusion and soft labels contribute
significantly to the overall performance improvement of our
method. This stems from the fact that we are now evaluat-
ing on categories which lack labeled target data, and thus
the network can not implicitly enforce domain invariance
through the classification objective alone. Separately, the
fact that we get improvement from the soft label training on
related tasks indicates that information is being effectively
transferred between tasks.

In Figure 5, we show examples for the
Amazon!Webcam shift where our method correctly
classifies images from held out object categories and the

6
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Multiclass accuracy over 16 classes which lack target labels
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Cross-dataset Experiment Setup

Source: ImageNet 
!
Target: Caltech256 
!
40 categories 
!
Evaluate adaptation performance with 0,1,3,5 
target labeled examples per class 

[tommasi`14]



ImageNet adapted to Caltech
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Summary: simultaneous transfer 
across domains and tasks

Domain confusion aligns the distributions

Softlabels transfer class correlations

Paper presented in poster session Wednesday 12/16 4B 



System uses model

Discrepancy due to modality shift

Lots of data to train models
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Adapting Deep Visual Models
Adapting across domains

Adapting across tasks

Adapting across modalities

Error bounds on adapted deep models

lamp

pillow
bed

night-stand

Generally applicable to adaptation with deep learning in AI



Thank you.


