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•  Domain	
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  and	
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•  Dataset	
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– Capture	
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How	
  relevant	
  is	
  DA	
  with	
  CNN	
  ?	
  
•  Most	
  widely	
  used	
  DA	
  seVng	
  for	
  CV:	
  

– Office	
  Dataset	
  
–  SURF	
  +	
  BoW	
  representa,on	
  

•  Modern	
  features	
  (CNN)	
  give	
  be_er	
  results	
  even	
  
without	
  DA	
  

•  “CNN	
  features	
  have	
  been	
  trained	
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  very	
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  all	
  possible	
  types	
  of	
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  model	
  that	
  fits	
  both	
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  and	
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  (e.g.	
  nega,ve	
  bias,	
  annotator	
  bias)	
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– May	
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  more	
  sensi,ve	
  to	
  domain	
  shids…	
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Fig. 1 Name the dataset experiment over the sparse setup with 12 datasets. We use a linear SVM clas-
sifier with C value tuned by 5-fold cross validation on the training set. We show average and standard
deviation results over 10 repetitions. The title of each confusion matrix indicates the feature used for the
corresponding experiments.

One way to quantitatively evaluate the cross dataset generalization was previously
proposed in [39]. It consists of measuring the percentage drop (% Drop) between
Self and Mean Others. However, being a relative measure, it looses the informa-
tion on the value of Self which is important if we want to compare the effect of dif-
ferent learning methods or different representations. In fact a 75% drop w.r.t a 100%
self average precision has a different meaning than a 75% drop w.r.t. a 25% self aver-
age precision. To overcome this drawback, we propose here a different Cross-Dataset

(CD) measure defined as

CD =

1

1 + exp�{(Self�Mean Others)/100} .

CD uses directly the difference (Self�Mean Others) while the sigmoid function
rescales this value between 0 and 1. This allows for the comparison among the results
of experiments with different setups. Specifically CD values over 0.5 indicate a pres-
ence of a bias, which becomes more significant as CD gets close to 1. On the other
hand, CD values below 0.5 correspond to cases where either Mean Other ⇥ Self
or the Self result is very low. Both these conditions indicate that the learned model is
not reliable on the data of its own collection and it is difficult to draw any conclusion
from its cross-dataset performance.

4 Studying the Sparse set

4.1 Name the Dataset

With the aim of getting an initial idea on the relation among the datasets and how dif-
ferent representations capture their specific content, we start our analysis by running
the name the dataset test on the sparse data setup. We extract randomly 1000 images
from each of the 12 collections and we train a 12-way linear SVM classifier that we
then test on a disjoint set of 300 images. The experiment is repeated 10 times with
different data splits and we report the obtained average results in Figure 1. The plot on
the left shows the recognition rate as a function of the training set size and indicates
that DeCAF allows for a much better separation among the collections than what is
obtained with BOWsift. In particular DeCAF7 shows an advantage over DeCAF6 for
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Table 3 Recognition rate per class from the multiclass cross-dataset generalization test. C256, IMG and
SUN stand respectively for Caltech256, Imagenet and SUN datasets. We indicate with “train-test” the pair
of datasets used in training and testing.

Table 4 Left: Imagenet images annotated as Caltech256 data with BOWsift but correctly recognized with
decaf7. Right: Caltech256 images annotated as Imagenet by BOWsift but correctly recognized with De-
CAF7.

Since all the datasets contain the same object classes, we are in fact reproducing
a setup generally adopted for domain adaptation [16,12]. By simplifying the dataset
bias problem and identifying each dataset with a domain, we can interpret the results
of this experiment as an indication of the domain divergence [2] and deduce that a
model trained on SUN will perform poorly on the object-centric collections and vice
versa. On the other hand, a better cross dataset generalization should be observed
among Imagenet, Caltech256 and Bing. We verify it in the following sections.

5.2 Cross-dataset generalization test.

We consider the same setup used before with 15 samples per class from each collec-
tion in training and 5 samples per class in test. However, now we train a one-vs-all
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Table 1 Binary cross-dataset generalization for two example categories, car and cow. Each matrix con-
tains the object classification performance (AP) when training on one dataset (rows) and testing on an-
other (columns). The diagonal elements correspond to the self results, i.e. training and testing on the same
dataset. The percentage difference between the self results and the average of the other results per row cor-
responds to the value indicated in the column “% Drop”. CD is our newly proposed cross-dataset measure.
We report in bold the values higher than 0.5. P,S,E,M stand respectively for the datasets Pascal VOC07,
SUN, ETH80, MSRCORID.

large number of training samples. From the confusion matrices (middle and right in
Figure 1) we see that it is easy to distinguish ETH80, Office and RGB-D datasets
from all the others regardless of the used representation, given the specific lab-nature
of these collections. DeCAF captures better than BOWsift the characteristics of A-
Yahoo, MSRCORID, Pascal VOC07 and SUN, improving the recognition results on
them. Finally, Bing, Caltech256 and Imagenet are the datasets with the highest con-
fusion level, an effect mainly due to the large number of classes and images per class.
Still, this confusion decreases when using DeCAF.

The information obtained in this way over the whole collections provides us only
with a small part of the full picture about the bias problem. The dataset recognition
performance does not give an insight on how the classes in each collection are related
among each other, nor how a model defined for a class in one dataset will generalize
to the others. We look into this problem in the following paragraph.

4.2 Cross-dataset generalization test

With a procedure similar to that in [39], we perform a cross-dataset generalization
experiment over two specific object classes shared among multiple datasets: car and
cow. For the class car we selected randomly from four collections of the sparse set
two groups of 50 positive and 1000 negative examples respectively for training and
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are kept separated as belonging to different tasks and a max-margin model is learned
from the information shared over all of them.

4.3.1 Method.

Let us assume to have i = 1, . . . , n datasets D1, . . . , Dn each consisting of si train-
ing samples Di = {(xi

1, y
i
1), . . . , (x

i
si , y

i
si)}. Here x

i
j ⇤ Rm represents the m-

dimensional feature vector and yij ⇤ {�1, 1} represents the label for the example
j of dataset Di. Specifically all the datasets share an object class and its images are
annotated with label 1, while all the other samples in the different datasets have la-
bel -1. The Unbias algorithm [25] consists in learning a binary model per dataset
wi = wvw + �i, where wvw is a model for the visual world, while �i is the bias
for each dataset. These two parts are obtained by solving the following optimization
problem:

min
wvw,�i

⇥,⇤

1

2
�wvw�2 +

�

2

n�

i=1

�⇥i�2 + C1

n�

i=1

si�

j=1

⇤ij + C2

n�

i=1

si�

j=1

⌅ij (1)

subject to wi = wvw +�i (2)
yijwvw · xi

j ⇥ 1� ⇥ij (3)

yijwi · xi
j ⇥ 1� ⇤ij (4)

⇥ij ⇥ 0, ⇤ij ⇥ 0 (5)
i = 1, . . . , n j = 1, . . . , si . (6)
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BOWsift
DeCAF7 Cow Self Other

M 98.97 86.56
P 53.67 34.29
S 40.89 29.20
A 44.76 25.94
E 99.40 86.56

Fig. 2 Percentage difference in average precision between the results of Unbias and the baseline All over
each target dataset. P,S,E,M,A,C1,C2,OF stand respectively for the datasets Pascal VOC07, SUN, ETH80,
MSRCORID, AwA, Caltech101, Caltech256 and Office. With O we indicate the overall value, i.e. the
average of the percentage difference over all the considered datasets (shown in black).
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Fig. 4 Results of the Bing-Caltech256 and Bing-SUN experiments with DeCAF7. We report the perfor-
mance of different domain adaptation methods (big plots) together with the recognition rate obtained in 10
subsequent steps of the self-labelling procedure (small plots). For the last ones we show the performance
obtained both with DeCAF7 and and with BOWsift when having originally 10 samples per class from
Bing.

In Figure 4 we present the results obtained using DECAF7 with the landmark
method, and the reshape approach combined respectively with SA and Domain Adap-
tation Machine (DAM [8]). More in details, we use the reshape method to divide the
Bing images into two subgroups and we apply SA to adapt each of them to the tar-
get. We identify the best subgroup as that with the highest target performance and
we report its results. The subgroups are instead considered as two source domains
with DAM: we assign different weights to their relative importance and show also
in this case the best obtained performance4. As reference we also present the per-
formance of the SA and DAM method without reshaping. Finally we test a simple
self-labelling strategy that was already used in [38]. Differently from the previously
described techniques this method learns a model over the full set of Bing data and
progressively selects target samples to augment the training set.

The obtained results go in the same direction of what observed previously with
the Unbias method. Despite the presence of noisy data, subselecting them (with land-
mark) or grouping the samples (reshape+SA, reshape+DAM) do not seem to work
better than just using all the source data at once. On the other way round self-labelling

[38] consistently improves the original results with a significant gain in performance
especially when only a reduced set of training images per class is available. One well
known drawback of this strategy is that subsequent errors in the target annotations
may lead to significant drift from the correct solution. However, when working with
DeCAF features this risk appears highly reduced: this can be appreciated looking at
the recognition rate obtained over ten iterations of the target selection procedure, con-
sidering in particular the comparison against the corresponding performance obtained
when using BOWsift (see the small plots in Figure 4).

6 Conclusions

In this paper we attempted at positioning the dataset bias problem in the CNN-
based features arena with an extensive experimental evaluation. At the same time,
we pushed the envelope in terms of the scale and complexity of the evaluation proto-

4 More details on the experimental setup can be found in the supplementary material.
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Adap,ng	
  R-­‐CNN	
  detector	
  	
  
from	
  Pascal	
  VOC	
  to	
  Microsod	
  COCO	
  

RCNN Detector

Figure : Object detection system overview using RCNN. RCNN (1) takes an input
image, (2) extracts around 2000 bottom-up region proposals, (3) computes
features for each proposal using a large convolutional neural network (CNN), and
then (4) classifies each region using class-specific linear SVMs.
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6 RAJ, NAMBOODIRI, TUYTELAARS: ADAPTING RCNN DETECTOR

(a) PASCAL (b) PASCAL (c) PASCAL (d) COCO (e) COCO (f) COCO
Figure 1: Image samples taken from COCO validation set and PASCAL VOC 2012 to show
domain shift

5.1 Experimental Setup

PASCAL dataset is simpler than COCO and also smaller hence it has been considered as
source dataset and COCO is considered as target dataset. For target dataset(COCO) sub-
space generation, the examples having a classifier score greater than a threshold of 0.4 are
considered positive examples for the target subspace. Non maximum supression is removed
from the process for consistency in the number of samples for subspace generation. For
source dataset(PASCAL), we evaluate the overlap of each object proposal region with the
ground truth bounding box and consider the bounding boxes with threshold greater than 0.7
with the ground truth bounding box as candidates for our source subspace generation. The
dimensionality of subspace for both the source and target dataset is kept fixed at 100. Sub-
space alignment is done between source and target subspaces and source data set is projected
on the target aligned source subspace for further training. Once the new detectors are trained
on the transformed feature the same procedure is applied as RCNN for detection on projected
target image features.
5.2 Results

Here in this section we provide evidence to show the performance of our method, compare
our results to other baselines and analyse the results. First we consider the statistical dif-
ference between the PASCAL VOC 2012 and COCO validation set data. We run RCNN
detector on both source and target data. We plot the histograms of score obtained for both
the dataset. It can be observed from their histogram in image 2 that there exists statistical dis-
similarity between both these datasets. Therefore, there is a need for domain adaptation. The
histogram evaluation has been done in two setting, first in a category wise setting and second
as a full dataset jointly. The findings of both these settings is similar and demonstrates the
statistical dissimilarity between these two datasets.

Figure 2: Histogram of scores. Fig 1 is for CoCo dataset and fig 2 for PASCAL VOC. Scores
is taken along x-axis and no. of object region with that score along y-axis

Now we evaluate our method on these two datasets. First baseline to compare with our
method is a simple RCNN detector trained on PASCAL VOC 2012. We evaluate the perfor-
mance of RCNN detector for all the 20 categories which are there in the PASCAL datasets.
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Adapting RCNN Detector Result

No. class RCNN- RCNN - Proposed DPM
No Transform Full Transform

1 plane 36.72 35.44 40.1 35.1
2 bicycle 21.26 18.95 23.28 1.9
3 bird 12.50 12.37 13.63 3.7
4 boat 10.45 8.8 10.61 2.3
5 bottle 8.75 11.46 8.11 7
6 bus 37.47 38.12 40.64 45.4

7 car 20.6 20.4 22.5 18.3
8 cat 42.4 43.6 45.6 8.6
9 chair 9.6 6.3 8.8 6.3
10 cow 23.28 20.40 25.3 17
11 table 15.9 14.9 17.3 4.8
12 dog 28.42 32.72 31.3 5.8
13 horse 30.7 31.11 32.9 35.3

Anant Raj (IIT Kanpur) IIT Kanpur July 2, 2015 29 / 39



Adapting RCNN Detector Result

No. class RCNN- RCNN - Proposed DPM
No Transform Full Transform

14 motorbike 31.2 29.05 34.6 25.4
15 person 27.8 28.8 30.9 17.5
16 plant 12.65 7.34 13.7 4.1
17 sheep 19.99 21.04 22.4 14.5
18 sofa 14.6 8.4 15.5 9.6
19 train 39.2 38.4 41.64 31.7
20 tv 28.6 26.4 29.9 27.9

Mean AP 23.60 22.7 25.43 16.9

Table : Domain adaption detection result on validation set of COCO dataset.
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