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Deep supervised neural networks 

•  are a “big thing” in computer vision and beyond 
• are hungry for labeled data 
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Where to get the data? 
Lots of modalities do not have large labeled data sets: 
• Biomedical 
• Unusual cameras / image types 
• Videos 
• Data with expert-level annotation (not mTurkable) 
• …. 
Surrogate training data often available: 
• Borrow from adjacent modality  
• Generate synthetic imagery (computer graphics) 
• Use data augmentation to amplify data (image-

based rendering, morphing, re-synthesis,….) 
 
Resulting training data are shifted. Domain 
adaptation needed. 
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Example: Internet images -> Webcam sensor 

[Saenko et al. ECCV2010] 
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Example: (semi-)synthetic to real 
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Assumptions and goals 

• Lots of labeled data in the source domain 
(e.g. synthetic images)  

• Lots of unlabeled data in the target domain 
(e.g. real images) 

• Goal: train a deep neural net that does 
well on the target domain 

Large-scale deep unsupervised domain 
adaptation 
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Domain shift in a deep architecture 

When trained on source 
only, feature distributions 
do not match: 

feature extractor 
label predictor 
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Idea 1: domain-invariant features wanted 

Feature distribution 
without adaptation: 

Our goal (after 
adaptation): 
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Idea 2: measuring domain shift 

Domain loss low Domain loss high 

Domain classifier: 
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Learning with adaptation 

1. Build this network 
2. Train feature extractor + class predictor on 

source data 
3. Train feature extractor + domain classifier 

on source+target data 
4. Use feature extractor + class predictor at 

test time 
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Idea 3: minimizing domain shift 

Emerging features: 
• Discriminative (good for predicting y) 
• Domain-discriminative (good for predicting d) 
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Idea 3: minimizing domain shift 

Gradient reversal layer: 
• Copies data without change at forwardprop 
• Multiplies the gradient by -λ at backprop 
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Idea 3: minimizing domain shift 

Emerging features: 
• Discriminative (good for predicting y) 
• Domain-invariant (not good for predicting d) 
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Gradient reversal layer 

class GradReversalLayer : Layer { 
 
 float lambda; 
 

blob forward (blob x)      { 
 return x  
} 
 
blob backward(blob dzdy) { 
 return multiply(dzdy, -lambda) 
} 

} 
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Saddle point interpretation 

Similar idea for generative networks: 
[Goodfellow et al. Generative adversarial nets. 
In NIPS, 2014] 

Our objective (small label prediction loss + 
large domain classification loss wanted) 

The backprop converges to a saddle point: 



Deep Model Adaptation using Domain Adversarial Training 

Backprop updates 

Label prediction loss for the ith example 

Domain classification loss for the ith example 
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Initial experiments: baselines 

Shallow adaptation baseline: [Fernando et al., 
Unsupervised visual domain adaptation using subspace 
alignment. ICCV, 2013] applied to the last-but-one layer 
 
Lower bound: training on source domain only 

Upper bound: training on target domain with labels 
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Example: from synthetic to real 

“House numbers” “Windows digits” 
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Example: large gap 

“House numbers” 
MNIST 
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Reverse 
direction does 
not work  
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Traffic signs: semi-supervised adaptation 

• 43 classes 
• 430 Real examples 
• 131000 Synthetic examples 
Testing on Real only 
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Sample architectures for image classification 
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Office dataset 

[Saenko et al. ECCV2010] 



Deep Model Adaptation using Domain Adversarial Training 

Results on Office dataset 

[Tzeng et al. Deep domain confusion: Maximizing 
for domain invariance. CoRR, abs/1412.3474, 2014] 

Most similar approach (matches means of distributions): 
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Beyond image classification 
Domain-Adversarial Training of Neural Networks 
Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal 
Germain, Hugo Larochelle, François Laviolette, Mario 
Marchand, Victor Lempitsky, JMLR 2016 
 

http://arxiv.org/find/stat/1/au:+Ganin_Y/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Ustinova_E/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Ajakan_H/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Germain_P/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Germain_P/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Larochelle_H/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Laviolette_F/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Marchand_M/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Marchand_M/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Lempitsky_V/0/1/0/all/0/1
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Adaptation for Person Re-identification 

VIPER to CUHK 
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Adaptation for Person Re-identification 
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Caveats 
• Domains should not be too far apart 
• Early on, the gradient from the domain 

classification loss should not be too strong 
• The trick used to obtain the results: gradually 

increase λ from 0 to 1  
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Conclusion 

• Scalable method for deep unsupervised 
domain adaptation 

• Based on simple idea. Takes few lines of code 
(+ defining a specific network architecture). 
Caffe implementation available. 

• State-of-the-art results 

• Unsupervised parameter tuning is easy (look at 
the domain classifier error) 

• Main challenge: initialization and stepsize 

http://sites.skoltech.ru/compvision/projects/grl/ 
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