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Abstract. We propose to extend the marginalized denoising autoencoder (MDA)
framework with a domain regularization whose aim is to denoise both the source
and target data in such a way that the features become domain invariant and the
adaptation gets easier. The domain regularization, based either on the maximum
mean discrepancy (MMD) measure or on the domain prediction, aims to reduce
the distance between the source and the target data. We also exploit the source
class labels as another way to regularize the loss, by using a domain classifier
regularizer. We show that in these cases, the noise marginalization gets reduced to
solving either the linear matrix system AX = B, for which there exists a closed-
form solution, or to a Sylvester linear matrix equation AX+XB = C that can
be solved efficiently using the Bartels-Stewart algorithm. We did an extensive
study on how these regularization terms improve the baseline performance and
we present experiments on three image benchmark datasets, conventionally used
for domain adaptation methods. We report our findings and comparisons with
state-of-the-art methods.
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1 Introduction

Domain Adaptation problems arise each time we need to leverage labeled data in one
or more related source domains, to learn a classifier for unseen or unlabeled data in a
target domain. The domains are assumed to be related, but not identical. The underly-
ing domain shift occurs in multiple real-world applications. Numerous approaches have
been proposed in the last years to address textual and visual domain adaptation (we refer
the reader to [32, 23, 36] for recent surveys on transfer learning and domain adaptation
methods). For text data, the domain shift is frequent in named entity recognition, sta-
tistical machine translation, opinion mining, speech tagging and document ranking [11,
33, 3, 41]. Domain adaptation has equally received a lot of attention in computer vision
[14, 34, 20, 13, 22, 21, 17, 29, 15, 1, 35] where domain shift is a consequence of chang-
ing conditions, such as background, location or pose, or considering different image
types, such as photos, paintings, sketches [25, 9, 4].

In this paper, we build on an approach to domain adaptation based on noise marginal-
ization [5]. In deep learning, a denoising autoencoder (DA) learns a robust feature rep-
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resentation from training examples. In the case of domain adaptation, it takes the unla-
beled instances of both source and target data and learns a new feature representation
by reconstructing the original features from their noised counterparts. A marginalized
denoising autoencoder (MDA) is a technique to marginalize the noise at training time;
it avoids the explicit data corruption and does not require an optimization procedure for
learning the model parameters but computes the model in a closed form. This makes
MDAs scalable and computationally faster than the regular denoising autoencoders. The
principle of noise marginalization has been successfully extended to learning with cor-
rupted features [30], link prediction and multi-label learning [6], relational learning [7],
collaborative filtering [26] and heterogeneous cross-domain learning [40, 27].

The marginalized domain adaptation refers to such a denoising of source and tar-
get instances that explicitly makes their features domain invariant. To achieve this
goal, we extend the MDA with a domain regularization term. We explore three ways
of such a regularization. The first way uses the maximum mean discrepancy (MMD)
measure [24]. The second way is inspired by the adversarial learning of deep neural
networks [19]. The third regularization term is based on preserving accurate classifica-
tion of the denoised source instances. In all cases, the regularization term belongs to
the class of squared loss functions. This guarantees the noise marginalization and the
computational efficiency, either as a closed form solution or as a solution of Sylvester
linear matrix equation AX+XB = C.

2 Feature Denoising for Domain Adaptation

Let Xs = [X1, . . . ,XnS
] denote a set of nS source domains, with the corresponding

labels Ys = [Y1, . . .YnS
], and let Xt denote the unlabeled target domain data. The

Marginalized Denoising Autoencoder (MDA) approach [5] is to reconstruct the input
data from partial random corruption [39] with a marginalization that yields optimal
reconstruction weights W in a closed form. The MDA minimizes the loss written as:

L(W,X) =
1

K

K∑
k=1

‖X− X̃kW‖2 + ω‖W‖2, (1)

where X̃k ∈ IRN×d is the k-th corrupted version of X = [Xs,Xt] by random feature
dropout with a probability p, W ∈ IRd×d, and ω‖W‖2 is a regularization term. To
avoid the explicit feature corruption and an iterative optimization, Chen et al. [5] has
shown that in the limiting case K → ∞, the weak law of large numbers allows to
rewrite L(W,X) as its expectation. The optimal solution W can be written as W =
(Q+ωId)

−1P, where P = E[X>X̃] and Q = E[X̃>X̃] depend only on the covariance
matrix S of the uncorrupted data, S = X>X, and the noise level p:

P = (1− p)S and Qij =

[
Sij(1− p)2, if i 6= j,
Sij(1− p), if i = j.

(2)

2.1 Domain regularization

To better address the domain adaptation, we extend the feature denoising with a domain
regularization in order to favor the learning of domain invariant features. We explore
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three versions of the domain regularization. We combine them with the loss (1) and
show how to marginalize the noise for each version and to keep W as a solution of a
linear matrix equation. The three versions of the domain regularization are as follows:

Regularization Rm based on the maximum mean discrepancy (MMD) with the
linear kernel; it aims at reducing the gap between the denoised domain means. The
MMD was already used for domain adaptation with feature transformation learning [31,
2] and as a regularizer for the cross-domain classifier learning [13, 38, 28]. In this paper,
in contrast to these papers where the distributions are approximated with MMD using
multiple nonlinear kernels we use MMD with the linear kernel1, the only one allowing
us to keep the solution for W closed form.

The regularization term for K corrupted versions of X is given by:

Rm =
1

K

K∑
k=1

Tr(W>X̃>kNX̃kW), where N =
[ 1

N2
s
1s,s 1

NsNt
1s,t

1
NsNt

1s,t 1
N2

t
1t,t

]
,

1a,b is a constant matrix of size Na×Nb with all elements being equal to 1 and Ns, Nt
are the number of source and target examples. After the noise marginalization, we ob-
tain E[Rm] = Tr(W>MW), where M = E[X̃>NX̃] is computed similarly to Q in
(2), by using Sm = X>NX instead of the correlation matrix S.

Regularization Rd based on domain prediction; it explicitly pushes the denoised
source examples toward target instances. The domain regularizer Rd, proposed in [8],
is inspired by [18] where intermediate layers in a deep learning model are regularized
using a domain prediction task. The main idea is to learn the denoising while pushing
the source towards the target (or vice versa) and hence allowing the source classifier to
perform better on the target. The regularization termRd can be written as follows:

Rd =
1

K

K∑
k=1

‖YT − X̃kWZD‖2, (3)

where ZD ∈ IRd is a domain classifier trained on the uncorrupted data to distinguish
the target from the source and YT = 1N is a vector containing only ones, as all de-
noised instances should look like the target2. After the noise marginalization, the partial
derivatives on W of this term expectation are the following:

∂ E[Rd]
∂W

= −2(1− p)X>YT ZD + 2QWZDZ
>
D.

Classification regularizationRl; it encourages the denoised source data to remain well
classified by the classifier pre-trained on source data. The regularizer Rl is similar to
Rd, except that Zl is trained on the uncorrupted source Xs and acts only on the labeled

1 Minimizing the distance between the corresponding domain centroids.
2 In the multi source case, ZD ∈ IRd×(nS+1), with the columns corresponding nS sources and

1 target domain classifiers, and YT ∈ IRN×(nS+1), with yns = 1 if s = nS + 1 and -1
otherwise. N is the total number of instances (source and target).
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Table 1. A summary of our models and corresponding notations.

Method Loss W closed form solution
M1 L (Q+ ωId)

−1P

MRm L+ γmRm (Q+ ωId + γmM)−1P

Loss W solution of AW +WB = C

MRd L+ γdRd A = ωQ−1, B = (Id + γdZDZ
>
D)

C = Q−1(P+ γd(1− p)X>YT Z>D)
MRl L+ γlRl A = Q−1

l (Q+ ωId), B = γlZlZ
>
l

C = Q−1
l (P+ γl(1− p)X>l YlZ

>
l )

source data. Also, instead of YT , the groundtruth source labels Yl = Ys are used3. In
the marginalized version ofRl, The partial derivatives on W can be written as

∂ E[Rl]
∂W

= −2(1− p)X>l YlZl + 2QlWZlZ
>
l ,

where Xl = Xs and Ql is computed similarly to Q, with Sl = X>l Xl.

2.2 Minimizing the regularized loss

We extend the noise marginalization framework for optimizing the data reconstruction
loss (1) and minimize the expected loss E[L + γφRφ], denoted E[Lφ], where in the
regularization term Rφ, φ refers to m, d or l version. From the marginalized terms
presented in the previous sections, it is easy to show that when minimizing these regu-
larized losses, the optimal solution for W given by ∂ E[Lφ]/∂W = 0 can be reduced
to solving the linear matrix system AW = B, for which there exists a closed-form
solution, or to a Sylvester linear matrix equation AW +WB = C that can be solved
efficiently using the Bartels-Stewart algorithm. Due to the limited space, we report all
the details in the full version and summarize the baseline, three extensions and the cor-
responding solutions in Table 1.

Similarly to the stacked MDAs, we can stack several layers together with only for-
ward learning, where the denoised features of the previous layer serve as the input to the
next layer and nonlinear functions such as tangent hyperbolic or rectified linear units
can be applied between the layers.

3 Experimental Results

Datasets. We run experiments on the popular OFF31 [34] and OC10 [22] datasets,
both with the full training protocol [21] where all source data is used for training and
with the sampling protocol [34, 22]. We evaluated our models both with the provided
SURFBOV and the DECAF6 [12] features. In addition we run experiments with the

3 Yl ∈ IRNs×C , where ync = 1 if xn belongs to the class c and -1 otherwise. In the multi
source case, we concatenate nS multi-class Za

l linear classifiers and the corresponding Ya
l

label matrices, where Za
l was trained on the source Dsa .
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Table 2. Single source domain adaptation with a single (r = 1) and 3 stacked layers (r = 3).
Bold indicates the best result per column, underline refers to best single layer results.

DECAF OC10 OFF31 TB
NN DSCM Ridge NN DSCM Ridge NN DSCM Ridge

BL (full) 84.5 78.7 82.6 65.2 61.6 62.8 39.8 42.6 37.2
BL (PCA) 84.1 81.8 82.5 65.4 63.7 62.4 40.9 42.7 39.7
M1 (r = 1) 84.1 82.0 83.6 65.3 63.6 64.4 41.0 42.8 40.6
MRm (r = 1) 84.1 82.1 83.6 65.4 63.6 64.4 41.0 42.8 40.6
MRd (r = 1) 84.4 82.9 83.7 65.7 64.0 64.7 41.1 43.2 40.6
MRl (r = 1) 84.5 82.2 82.2 66.9 65.6 65.6 41.3 43.3 40.9
M1 (r = 3) 84.3 82.4 84.0 64.7 63.6 65.6 41.2 42.6 41.3
MRm (r = 3) 84.3 82.4 84.0 64.7 63.6 65.6 41.2 42.6 41.3
MRd (r = 3) 84.8 83.9 84.9 66.0 64.7 66.0 41.4 43.8 41.2
MRl (r = 3) 84.1 82.2 81.8 67.7 65.9 66.5 41.8 43.9 41.5

full training protocol on the Testbed Cross-Dataset [37] (TB) using both the provided
SIFTBOV and the DECAF7 features.
Parameter setting. To compare different models we run all experiments with the same
preprocessing and parameter values4 . Features are L2 normalized and the feature di-
mensionality is PCA reduced to 200 (BOV features are in addition power normalized).
Parameter values are ω = 0.01, γφ = 1 and p = 0.1. Between layers we apply tangent
hyperbolic nonlinearities and we concatenate the outputs of all layers with the original
features (as in [5]).

We evaluate how the optimal denoising matrix W influences three different classi-
fication methods, a regularized multi-class ridge classifier trained on the source (Z =
(X>l Xl+δId)

−1X>l Yl), the nearest neighbor classifier (NN) and the Domain Specific
Class Means (DSCM) classifier [10] where a target test example is assigned to a class
based on a soft-max distance to the domain specific class means. Two last classifiers
are selected for their non-linearity. Also the NN is related to retrieval and DSCM to
clustering, so the impact of W on these two extra tasks is indirectly assessed.

Table 2 shows the domain adaptation results with a single source and Table 3 shows
multi source results, both under the full training protocol. For each dataset, we consider
all possible source-target pairs for the domain adaptation tasks. Hence we average over
9 tasks on OFF31 (with 3 domains A,D,W), and over 12 tasks on OC10 (4 domains
(A,C,D,W) and TB (4 domains B,C,I,S).

Table 2 shows the results on L2 normalized DECAF features. It compares the do-
main regularization extensions to the baselines (BL) obtained with the L2 normalized
features (full) and with the PCA reduced features as well as with MDA. As the table
shows, the best results are often obtained with MRl, except in the OC10 case where
MRd performs better. On the other hand, theRm regularizer (MRm) does not improve
the M1 performance. Stacking several layers can further improve the results. When
comparing these results to the literature we can see that on OC10 we perform compara-
bly to DAM [14] (84%) and DDC [38] (84.6%) but worse than more complex methods

4 Cross validation on the source was only helpful for some of the configurations, for others it
yielded performance decrease.
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Table 3. Multi-source adaptation results without stacking. Bold indicates best result per column.

BOV OC10 OFF31 TB
NN DSCM Ridge NN DSCM Ridge NN DSCN Ridge

BL 50.4 54.6 51.9 39.7 33.3 25.4 16.5 17.6 21
M1 50.8 54.7 52.1 39.9 33.8 25.6 16.6 17.7 21
MRd 50.8 54.1 51.5 40.1 33.5 26.9 16.6 17.7 21.1
MRl 53.8 53.3 52.5 39 36.5 28.5 17.1 19.6 20.9

such as JDA [29] (87.5%), TTM [16] (87.5%) or DAN [28] (87.3%). On OFF31, the
deep adaptation method DAN [28] (72.9%) significantly outperforms our results. On
the TD dataset, in order to compare our results on DECAF6 to CORAL+SVM [35]
(40.2%) we average six source-task pairs (without the domain B) and obtain 43.6% with
MRd+DSCM and 43.1% with MRl+DSCM. We also outperform5 CORAL+SVM [35]
(64%) with our MRd+Ridge (65.2%) when using the sampling protocol on OFF31 .

Concerning the BOV features, the best results (using 3 layers) with the full training
protocol on OFF31 are with MRl+NN (29.7%) and on OC10 with MRd+Ridge(48.2%).
The latter is comparable to CORAL+SVM [35] (48.8%), but is below LSSA [1] (52.3%)
that first selects landmarks before learning the transformation. The landmark selection
is complementary to our approach and can boost our results as well.

In Table 3, we report the averaged results for the multi-source cases, obtained with
BOV features, under the full training protocol. For each dataset, all the configurations
with at least 2 source domains are considered. It yields 6 such configurations for OFF31
and 16 configurations for OC10 and TB. The results indicate clearly that taking into
account the domain regularization improves the performance.

4 Conclusion

In this paper we extended the marginalized denoising autoencoder (MDA) framework
with a domain regularization to enforce domain invariance. We studied three versions
of regularization, based on the maximum mean discrepancy measure, the domain pre-
diction and the class predictions on source. We showed that in all these cases, the noise
marginalization is reduced to closed form solution or to a Sylvester linear matrix sys-
tem, for which there exist efficient and scalable solutions. This allows furthermore to
easily stack several layers with low cost. We studied the effect of these domain reg-
ularizations and run single source and multi-source experiments on three benchmark
datasets showing that adding the new regularization terms allow to outperform the base-
lines. Compared to the state-of-the-art, our method performs better than classical feature
transformation methods but it is outperformed by more complex deep domain adapta-
tion methods. Compared to the latter methods, the main advantage of the proposed
approach, beyond its low computational cost, is that as we learn an unsupervised fea-
ture transformation, we can boost the performance of other tasks such as retrieval or
clustering in the target space.

5 Their best results (68.5% and 69.4%) obtained with fine-tuned features are not directly com-
parable as our results can also be boosted when using these fine-tuned features.



Domain Instance Denoising 7

References

1. Aljundi, R., Emonet, R., Muselet, D., Sebban, M.: Landmarks-based kernelized subspace
alignment for unsupervised domain adaptation. In: Proc. of CVPR, (IEEE). pp. 56–63 (2015)

2. Baktashmotlagh, M., Harandi, M., Lovell, B., Salzmann, M.: Unsupervised domain adapta-
tion by domain invariant projection. In: Proc. of ICCV, (IEEE). pp. 769–776 (2013)

3. Blitzer, J., Kakade, S., Foster, D.P.: Domain adaptation with coupled subspaces. In: Proc. of
AISTATS. pp. 173–181 (2011)

4. Castrejón, L., Aytar, Y., Vondrick, C., Pirsiavash, H., Torralba, A.: Learning aligned cross-
modal representations from weakly aligned data. In: Proc. of CVPR, (IEEE) (2016)

5. Chen, M., Xu, Z., Weinberger, K.Q., Sha, F.: Marginalized denoising autoencoders for do-
main adaptation. In: Proc. of ICML. pp. 767–774 (2012)

6. Chen, Z., Chen, M., Weinberger, K.Q., Zhang, W.: Marginalized denoising for link prediction
and multi-label learning. In: Proc. of AAAI (2015)

7. Chen, Z., Zhang, W.: A marginalized denoising method for link prediction in relational data.
In: Proc. of ICDM (2014)

8. Clinchant, S., Csurka, G., Chidlovskii, B.: A domain adaptation regularization for denoising
autoencoders. In: Proc. of ACL (2016)

9. Crowley, E.J., Zisserman, A.: In search of art. In: Computer Vision for Art analysis, ECCV
workshop (2014)

10. Csurka, G., Chidlovskii, B., Perronnin, F.: Domain adaptation with a domain specific class
means classifier. In: TASK-CV, ECCV workshop (2014)

11. Daume III, H., Marcu, D.: Domain adaptation for statistical classifiers. Journal of Artificial
Intelligence Research 26(1), 101–126 (2006)

12. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A
deep convolutional activation feature for generic visual recognition. CoRR arXiv:1310.1531
(2013)

13. Duan, L., Tsang, I.W., Xu, D.: Domain transfer multiple kernel learning. Transactions of
Pattern Recognition and Machine Analyses (PAMI) 34(3), 465–479 (2012)

14. Duan, L., Tsang, I.W., Xu, D., Chua, T.S.: Domain adaptation from multiple sources via
auxiliary classifiers. In: Proc. of ICML. pp. 289–296 (2009)

15. Farajidavar, N., deCampos, T., Kittler, J.: Adaptive transductive transfer machines. In: Proc.
of BMVC (2014)

16. Farajidavar, N., deCampos, T., Kittler, J.: Transductive transfer machines. In: Proc. of ACCV.
pp. 623–639 (2014)

17. Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adapta-
tion using subspace alignment. In: Proc. of ICCV, (IEEE). pp. 2960–2967 (2013)

18. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. CoRR
arXiv:1409.7495 (2014)

19. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proc. of
ICML. pp. 1180–1189 (2015)

20. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classifica-
tion: A deep learning approach. In: Proc. of ICML. pp. 513–520 (2011)

21. Gong, B., Grauman, K., Sha, F.: Connecting the dots with landmarks: Discriminatively learn-
ing domain invariant features for unsupervised domain adaptation. In: Proc. of ICML. pp.
222–230 (2013)

22. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain
adaptation. In: Proc. of CVPR, (IEEE). pp. 2066–2073 (2012)

23. Gopalan, R., Li, R., Patel, V.M., Chellappa, R.: Domain adaptation for visual recognition.
Foundations and Trends in Computer Graphics and Vision 8(4) (2015)



8 Csurka et al.

24. Huang, J., Smola, A., Gretton, A., Borgwardt, K., Schölkopf, B.: Correcting sample selection
bias by unlabeled data. In: Proc. of NIPS, (Curran Associates) (2007)

25. Klare, B.F., Bucak, S.S., Jain, A.K., Akgul, T.: Towards automated caricature recognition.
In: Proc. of ICB (2012)

26. Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising auto-
encode. In: Proc. of CIKM, (ACM). pp. 811–820 (2015)

27. Li, Y., Yang, M., Xu, Z., Zhang, Z.: Learning with marginalized corrupted features and labels
together. In: Proc. of AAAI. vol. arXiv:1602:07332 (2016)

28. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adapta-
tion networks. In: Proc. of ICML (2015)

29. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribu-
tion adaptation. In: Proc. of ICCV, (IEEE). pp. 2200–2207 (2013)

30. Maaten, L.v.d., Chen, M., Tyree, S., Weinberger, K.: Learning with marginalized corrupted
features. In: Proc. of ICML (2013)

31. Pan, S.J., Tsang, Ivor W.and Kwok, J.T., Yang, Q.: Domain adaptation via transfer compo-
nent analysis. Transactions on Neural Networks 22(2), 199 – 210 (2011)

32. Pan, S.J., Yang, Q.: A survey on transfer learning. Transactions on Knowledge and Data
Engineering 22(10), 1345–1359 (2010)

33. Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-domain sentiment classification via
spectral feature alignment. In: Proc. of WWW (2010)

34. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new do-
mains. In: Proc. of ECCV, (Springer). pp. 213–226 (2010)

35. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Proc. of
AAAI (2016)

36. Sun, S.S., Shi, H., Wu, Y.: A survey of multi-source domain adaptation. Information Fusion
24, 84–92 (2015)

37. Tommasi, T., Tuytelaars, T.: A testbed for cross-dataset analysis. In: TASK-CV, ECCV work-
shop (2014)

38. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maxi-
mizing for domain invariance. CoRR arXiv:1412.3474 (2014)

39. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust
features with denoising autoencoders. In: Proc. of ICML (2008)

40. Zhou, J.T., Pan, S.J., Tsang, I.W., Yan, Y.: Hybrid heterogeneous transfer learning through
deep learning. In: Proc. of AAAI (2014)

41. Zhou, M., Chang, K.C.: Unifying learning to rank and domain adaptation: Enabling cross-
task document scoring. In: Proc. of SIGKDD (ACM). pp. 781–790 (2014)


