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Training a Mentee network by transferring
knowledge from a Mentor network
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Abstract. Automatic classification of foods is a challenging problem.
Results on ImageNet dataset shows that ConvNets are very powerful in
modeling natural objects. Nonetheless, it is not trivial to train a Con-
vNet from scratch for classification of foods. This is due to the fact that
ConvNets require large datasets and to our knowledge there is not a
large public dataset of foods for this purpose. An alternative solution
is to transfer knowledge from already trained ConvNets. In this work,
we study how transferable are state-of-art ConvNets to classification of
foods. We also propose a method for transferring knowledge from a big-
ger ConvNet to a smaller ConvNet without decreasing the accuracy. Our
experiments on UECFood256 dataset show that state-of-art networks
produce comparable results if we start transferring knowledge from an
appropriate layer. In addition, we show that our method is able to effec-
tively transfer knowledge to a smaller ConvNet using unlabeled samples.

Keywords: Food classification, Convolutional neural network, Deep learn-
ing, Transfer learning

1 Introduction

Obesity is known as a disease in developed countries and it can be controlled
by monitoring the food intake. However, accurate calculation of calorie intake is
not trivial and patients tend to calculate it quickly and conveniently. Automatic
estimation of calorie intake can be done using the image of a food. To this end,
first the system recognizes foods in the classification stage and, then, it estimates
calorie based on the category of food.

Early attempts on food recognition focused on the traditional approached
which extracts features using hand-crafted methods and then applies a classifier
for recognizing foods. Kong et. al [7] classified foods using multiple viewpoints.
They compute SIFT and Gaussian region detector as the feature vector. Also,
Kawano et. al [5] proposed a system which asks the user to draw a bounding box
around food regions. Then, SURF based bag of features and color histograms
are extracted and classified using a linear SVM. Matsuda et. al [9] proposed a
method which takes into account the co-occurrence statistics of 100 food items.
Similar to previous methods they applied Multiple Kernel Learning SVM on the
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image feature vectors such as color, SIFT, CSIFT, HOG and Gabor. Also, they
utilized deformable part model, circle detector and JSEG methods for detecting
candidate regions. Similarly, Hoashi et. al [4] classified 85 food classes by fus-
ing BoF, color histogram, Gabor and HOG using Multiple Kernel Learning. In
contrast to the previous methods, Yang et. al [13] classified food images with
considering spatial relationship between food items. In this work, each image is
represented by a pairwise feature distribution.

Lately, researchers have started to utilize Convolutional Neural Networks
(ConvNets) in the task of food recognition. For instance, Christodoulidis et. al [1]
proposed a 6 layer ConvNet to classify 7 items of food. They applied the ConvNet
on the already segmented food images and used a voting method for determining
the class of each food item. Also, Kawano et al [12] fused Fisher Vector (FV)
with pre-trained Deep Convolutional Neural Network features trained on 2000
ImageNet categories. Taking into account that food recognition systems might
be implemented on mobile devices, we need a ConvNet with low memory and
power consumption. Besides, time-to-completion of the ConvNet must be low in
order to have a better user experience. To our knowledge, there are a few public
food datasets such as UEC-Food100, UEC-Food256, and Pittsburgh Food Image
Dataset. The problem of these datasets is that the number of samples in each
class is scarce and highly imbalanced which makes them inapplicable for training
a deep ConvNet with millions of parameters from scratch.

Contribution: In this paper, we partially address this problem by transfer-
ring knowledge of ConvNets trained on ImageNet dataset to a smaller ConvNet
and fine-tune it using the dataset of food images. To be more specific, we first
transfer knowledge of GoogleNet [11], AlexNet [8], VGGNet [10] and Microsoft
Residual Net [2] on the UECFood 256 dataset. Our experiments show that if
the knowledge of these ConvNet are transferred appropriately, they are able to
outperform the state of art methods applied on this dataset. More importantly,
we propose a method to transfer knowledge of the these ConvNets to a smaller
ConvNet with less time-to-completion, less memory and similar accuracy.

2 Knowledge Transfer

One of the major barriers in utilizing ConvNets on the task of food recognition is
that public food datasets are usually small. For this reason, it is not practical to
train a ConvNet from scratch for this task. One alternative solution for solving
this problem is to use the pre-trained ConvNets as a generic feature extraction
method. For a ConvNet with L layers, we use Φl(x;W1 . . .Wl) to represent the
vector function in the lth layer parametrized by {W1 . . .Wl}. With this formula-
tion, ΦL(x) represents the classification layer. Utilizing a ConvNet as a generic
feature extractor means that we collect set X = {(ΦL−1(x1), y1), . . . , (ΦL−1(xN ), yN )}
where xi is the image of food and yi is its actual label. Then, we train a classifier
(linear or non-linear) using the samples in X .

As we show and explain in Section 3, this method does not produce accurate
results with a linear classifier. For this reason, it is better to adjust the param-
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eters of the ConvNet using the current dataset. By this way, the pre-trained
ConvNets classify foods more accurately. As we mentioned earlier, we need an
accurate ConvNet with lower time-to-completion and less memory requirement.
Hence, we must find a way to compress these pre-trained ConvNet. To this
end, we propose a method that transfers the knowledge of a large pre-trained
ConvNets to a smaller ConvNet by keeping the accuracy high. Our method is
inspired by the recently proposed method by Hinton et al.[3] called Knowledge
Distillation. Given a pre-trained network zsource = Φsource(x;W1 . . .WLs

), the
aim of this method is to train zdistilled = Φdistilled(x;W1 . . .WLd

) so that:

‖ ez
distill
i∑

j e
zdistilled
j

− e
zsource
i

T∑
j e

zsource
j

T

‖ (1)

is minimum for all sample in training set. In this equation, zi indicates the ith

output and T is a parameter to soften the output of source network. One property
of this method is that the classification score of the source ConvNet could be
significantly different from the distilled ConvNet. This is due to the fact that
there could be infinite combinations of classification score zdistill to produce
the same sofmax(zsource) where ‖zdistill − zsource‖ might be very large. For
example, suppose that sofmax(zsource) = [0.99, 0.01] for a network with two
outputs. Then, zdistill = [10, 5.4049]1 and zdistill = [100, 95.4049]2 will be the
same softmax(zdistill). In other words, Φdistilled(x) found by minimizing (1) may
not accurately approximate Φsource(x). Instead, it may mimic the normalized
output of this function.

The advantage of this property is on distilled networks which are shallower
than the source network. To be more specific, shallower networks might not
be able to accurately approximate the zsource if they are not adequately wide.
However, they might be able to produce zdistill such that (1) is minimized. A
drawback of this property is on networks that are deeper than or as deep as
the source network. These networks might be able to accurately approximate
zsource. However, training the distilled network by minimizing (1) is likely not
to accurately approximate zsource. Besides, two different initialization might
end up with two different distilled network where their zdistill are significantly
different from each other.

2.1 Proposed Method

We formulate knowledge transfer from one network to another network in terms
of function approximation. Our proposed method is illustrated in Fig.1. It con-
sists of a Mentor ConvNet which is a pre-trained network and a Mentee ConvNet
which is smaller and faster than the Mentor. Our aim is that Mentee performs
similar to Mentor. Representing the Mentor with Φmentor(x) and the Mentee

1 [10,5.4048801498654111] to be exact.
2 [100, 95.404880149865406] to be exact.
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Fig. 1. Our proposed method for transferring knowledge from a larger network called
Mentor to a smaller network called Mentee.

with Φmentee(x), we want to train Φmentee(x) such that ∀x∈XΦmentor(x) =
Φmentee(x) where X is a set consists of many unlabelled images. In other words,
we formulate the knowledge transfer from Mentor to Mentee as a function ap-
proximation problem. By this way, the Mentee ConvNet is trained to approxi-
mate un-normalized Mentor ConvNet. Formally, our objective function is defined
as sum of square error :

E =

N∑
i

‖Φmentor(x)− Φmentee(x)‖2. (2)

Theoretically, we do not need labelled images to transfer knowledge from Men-
tor to Mentee since the above loss function does not depend on labels of image.
Consequently, we can use any large dataset of unlabelled images to approximate
Φmentor(x) using Φmentee(x). By this way, Mentee is trained with non-food im-
ages. Notwithstanding, Φmentee(x) requires a large dataset of unlabelled images
to be generalized. Since collecting this dataset is not tedious, we modified the
above loss function as a weighted average of sum of square error and log likeli-
hood:

E =

N∑
i

α1‖Φmentor(x)− Φmentee(x)‖2 − α2

∑
∀{i|yi>0}

log(softmax(Φmentee(xi))). (3)

During the first iterations, we set alpha2 = ε so Mentee is mainly trained using
sum of square error. Eventually, alpha2 is increased in order to take into account
the information coming from labelled images. In the next section, we explain the
architecture of Mentor as well as Mentee networks.

3 Experiments

We transferred knowledge of AlextNet[8], GoogleNet[11], VGGNet[10] and ResNet[2]
on UECFood256 dataset[6]. As we show shortly, if the knowledge of these Con-
vNets are properly adjusted to the domain of foods, they are able to outperform
state-of-art methods. We also show that all of these ConvNets produce compa-
rable results. However, taking into account their required memory and time-to-
completion, GoogleNet is preferable over other ConvNets. For this reason, we
use GoogleNet as the Mentor in Fig.1.
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Our aim is to train Mentee so it approximates Mentor as accurate as possible.
For this reason, we choose the architecture of Mentee to be exactly similar to
GoogleNet. However, we reduce the width of Mentee by reducing the number of
filters in each inception module to 90% of the original size. We use a combination
of the ImageNet and the Caltech 256 datasets by ignoring their labels and use
them as the set of unlabelled samples. Besides, we use UECFood256 dataset in
order to compute the second term in (3) using labelled samples.

Results: In order to adapt knowledge of the ConvNets we mentioned earlier,
we conducted the following procedure. First, all the layers are frozen except the
last fully connected layer. Freezing a layer means that we set the learning rate
of that particular later to zero so it does not change during backpropagation.
Then, the last layer is trained on the food dataset. Second, we unfreeze the last
two layers and keep the rest of the layers frozen. Third, the last three layers are
unfrozen and the rest of the layers are kept frozen. Table 1 shows the top-1 and
top-5 accuracies of the ConvNets in these settings.

Last layer 2nd last layer 3rd last layer

top-1 (%) top-5 (%) top-1 (%) top-5 (%) top-1 (%) top-5 (%)

alexnet 49 76 56 81 59 83
googlenet 55 81 61 86 62 86
vggnet 51 78 60 84 62 86
resnet 60 83 62 86 NA NA

Table 1. Adapting knowledge of ConvNets trained on ImageNet dataset to UECFood-
256 dataset in different settings.

The results suggest that adapting knowledge of the ConvNets must start
from the two last layers. When we only adapt the knowledge of the last layer
on UECFood-256 dataset, this means that the weights of the linear classifier
are adapted. However, because these ConvNets are trained on ImageNet dataset
their domain are different from UECFood-256 dataset. In other words, these
ConvNets have been basically trained to distinguish the objects in ImageNet
dataset. So, when they are applied on UECFood-256 dataset, foods might not
be linearly separable in the last 2nd layer. Nonetheless, when the ConvNets are
adapted starting from the last two layers, they learn to transform the feature
vectors produced in the last 3rd layer to be linearly separable in the last 2nd
layer. Therefore, foods become linearly separable in the last layer. Besides, we
observe that adapting the ConvNets starting from the last 3rd layer does not
change the results. This might be due to the size of UECFood-256 dataset being
small. Since the number of parameters starting from the last 3rd layer are high,
they are not able to generalize properly provided by a small dataset.

Next, we use the GoogleNet adapted from the last three layers as the Mentor
and trained the Mentee network. The architecture of the Mentee network has
been explained in the beginning of this section. Table 2 illustrates the accuracy
of Mentee for different valued of k. Comparing the plot with Table 1 shows that
Mentee has accurately approximated the Mentor network and yet it is smaller
and faster than Mentor.
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We also compared our Mentee with the best results reported on UECFood-
256 dataset.It is worth mentioning that [12] have used AlexNet as feature ex-
tractor and trained a classifier on top of it. Also, they have not augmented the
original dataset. For this reason, their result is different from our result. In addi-

top (%)

1 2 3 4 5 6 7 8 9 10

62 74 80 83 86 88 89 90 91 92
Table 2. Accuracy of Mentee computed for different k

tion, DCNN-Food is modified version (number of neuron in the fully connected
layer has been increased to 6144) of AlexNet which is specifically trained on
the food images from ImageNet dataset. We observe that our Mentee has pro-
duced comparable results with respect to FV+DCNN-Food method with a much
smaller network. Also, the top-5 accuracy of both of these methods are equal.
Moreover, FV+DCNN-Food needs much more computations since it must com-
pute Spatial Pyramid Fisher Vectors and apply a large network on the image.
However, because we have trained our Mentor network properly (we trained the
last three layers), the Mentee network is also able to predict classes, accurately.

method top-1 (%) top-5 (%)

Color FV 42 64
RootHOG FV 36 59
FV (Color+HOG) 53 76
DCNN 44 71
DCNN-Food 59 83
FV+DCNN 59 82
FV+DCNN-Food 64 86
Our Mentee 62 86

Table 3. Comparing our Mentee network with other methods reported in [12]

We have also computed the precision and recall of each class separately. You
can find these results in the supplementary materials.

4 Conclusion

In this paper, we proposed a method for transferring knowledge from a bigger
network called Mentor to a smaller network called Mentee in two phases. In the
first phase Mentee uses unlabelled images to approximate the score produced by
Mentor. In the second, phase, a dataset of labelled images are used to further
tune the knowledge of small network in a supervised fashion. Our experiments
on UECFood-256 dataset shows that pretrained ConvNet produce more accu-
rate results when their knowledge is adapted starting from the last 2nd or 3rd
layer. Using this information, we used GoogleNet as the Mentor and its com-
pressed version as Mentee and transferred knowledge of the Mentor to Mentee.
We showed that the Mentee network is as accurate as Mentor network and, yet,
it is faster and consume less memory since its widths is less than the Mentor
network.
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