Synthetically-augmented data for deep text spotting Andrea Vedaldi

VARVAI, ECCV 2016 http://adas.cvc.uab.es/varvai2016/

Modern convolutional nets

Excellent performance in image understanding tasks

Learn a sequence of **general-purpose representations** Millions of parameters learned from data

Generally very large datasets are required for good performance

The quest for **supervised** big data

The availability of large annotated dataset is perhaps the biggest limiting factor in machine learning applications. Challenges:

Data collection

- Cost (e.g. pictures of mars)
- Scarcity (e.g. rare diseases)
- Sensitivity (e.g. personal data, industrial secrets, military data)

Data annotation

- Scale (e.g. segmenting millions of images)
- Expertise (e.g. medical imaging)

A major advantage of natural vision is the ability to learn from only a few examples.

Ultimately, the cure are much smarter machines that require less supervision. But what can we do in the mean time?

Cheap sources of supervised data

Synthetic or augmented

Synthetic data: generated using computer graphics.

Augmented data: generated by transforming real images.

Cheap sources of data

Synthetic or augmented

Synthetic data: generated using computer graphics.

Augmented data: generated by transforming real images.

Augmented data

The standard approach is data augmentation / jittering / virtual samples

This amounts to apply random but semanticpreserving transformations to the image

translation, scale changes rotation, affine distortions, colour shifts, saturation changes, noise, ...

Here: data augmentation example from ResNet training

[S. Cho and K. Cha. Evolution of neural network training set through addition of virtual samples. In Proc. Evolutionary Computation, 1996]

Targeted transformations

E.g. to simulate motion in medical imaging

[A Prakosa, M Sermesant, P Allain, N Villain, C Rinaldi, K Rhode, R Razavi, H Delingette, N Ayache, Cardiac Electrophysiological Activation Pattern Estimation from Images using a Patient-Specific Database of Synthetic Image Sequences, IEEE Tr Biomedical Engineering 2013]

Cheap sources of supervised data

Synthetic or augmented

Synthetic data: generated using computer graphics.

Augmented data: generated by transforming real images.

Synthetic data for learning local features

[A. Vedaldi, H. Ling, and S. Soatto. Knowing a good feature when you see it: Ground truth and methodology to evaluate local features for recognition. CVDRR, 2010]

Kinect

The best known example of synthetic training data

[Real-Time Human Pose Recognition in Parts from Single Depth Images, Shotton et al. 2016]

ResearchDoom

Pre-computed: Tons of data in Microsoft Coco format

Annotations: Object masks (instance and categories), depth maps, egomotion

http://www.robots.ox.ac.uk/~vgg/research/researchdoom/

Some references

Games

- Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing Atari with deep reinforcement learning. CoRR, 2013.
- Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action- conditional video prediction using deep networks in Atari games, NIPS, 2015.
- ▶ W. Qiu and A. Yuille. UnrealCV: Connecting computer vision to Unreal Engine. arXiv, 2016.
- M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski. ViZDoom: A doom-based AI research platform for visual reinforcement learning. CoRR, abs/1605.02097, 2016.
- S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for data: Ground truth from computer games. In Proc. ECCV, 2016.

Optical Flow

- Sintel: D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In Proc. ECCV, 2012.
- Flying Things etc: N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In Proc. CVPR, 2016.

Other simulations

- C. Chen, A. Seff, A. Kornhauser, and J. Xiao. DeepDriving: Learning affordance for direct perception in autonomous driving. In Proc. ICCV, 2015.
- G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. Lopez. The SYNTHIA Dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In Proc. CVPR, 2016.

Cheap sources of data

Synthetic or augmented

Synthetic data: generated using computer graphics.

Augmented data: generated by transforming real images.

Cheap sources of data

Synthetic or augmented

Modify real images by inserting virtual objects.

Synthetic data for text recognition

Synthetically-augmented data for text detection

Synthetic data mixing for face/scene retrieval

A massive classifier

Goal: map images to one of 90K classes (one per word)

Architecture

- each linear operator is followed by ReLU
- ▶ c_1 , c_2 , c_3 , c_5 are followed by 2×2 max pooling
- ► 500 million parameters
- evaluation requires 2.2ms on a GPU

Learning a massive classifier

Massive training data

- ~100 examples per word
- 9 million images for 90K words

Learning algorithm

- ► SGD
- mini-batches

Mini-batch composition

- ▶ stable learning requires each batch to contain ~1/5 of all the classes
- ► batch size = 18K (too slow!)

Incremental training

- learn first using 5K classes only (batch size = 1K)
- then incrementally add 5K more classes

dum

Synth Text

infinity large, fully supervised (at the word and character level)

http://www.robots.ox.ac.uk/~vgg/data/text/

9M precomputed images [10 GB]

18

Synth Text generation

Font rendering

 sample at random one of 1400 Google Fonts

Border/shadow

randomly add inset/outset border and shadow

Projective distortion

Blending

- use a random crop from SVT as background
- randomly sample alpha channel, mixing operator (normal, burn, ...)

Noise

elastic distortion, white noise, blur, JPEG compression, …

Qualitative results: text retrieval

"APARTMENTS"

BORIS JOHNSON

Qualitative results: text retrieval

"POLICE"

"CASTROL"

"VISION"

Demo

http://zeus.robots.ox.ac.uk/textsearch/#/search/

Synthetic data for text recognition

Synthetically-augmented data for text detection

Synthetic data mixing for face/scene retrieval

Text detection

Recognition is only half of the problem: text needs to be detected in the first place

Goal: Train a fast, fullyconvolutional ConvNet for localisation on this synthetic data

Key challenge: availability of suitable training data

Text spotting in natural scenes is hard

Nuisance factors

Fonts

Distortions

Colors

Blur

Shadows

Borders

Textures

Sizes ...

Document OCR

BOOK V.

OF PLATO.

177

THE FIFTH BOOK.

I DENOMINATE then indeed both fuch a city and republic, and fuch a man as we have defcribed, good and upright; and if this republic be an upright one, I deem the others bad and erroneous, both as to the regulations in cities, and the eftablishing the temper of foul of individuals, and that in four fpecies of illnefs. Of what kind are thefe, faid he? I was then proceeding to mention them in order, as they appeared to me to rife out of one another: but Polemarchus ftretching out his hand, (for he fate a little further off than Adimantus,) caught him by the robe at his fhoulder, and drew him near; and bending himfelf towards him, fpoke fomething in a whifper, of which we heard nothing but this; Shall we let pafs then? faid he, or what fhall we do? Not at all, faid Adimantus, fpeaking now aloud. And I reply'd, what then will not you let pafs? You, faid he, as I had faid, what. You feem to us to be growing negligent, and to fleal a whole branch of the difcourfe, and that not the leaft confiderable, that you may not have the trouble of going through it; and you imagine that you efcaped our notice, when you made this fpeech fo fimply, viz. that both as to wives and children, it is manifeft to every one, that thefe things will be common among friends. Did not I fay right, Adimantus! Yes, faid he: but

High Contrast

Plain Background

Well defined lines

Limited variation in fonts and size

Learning a CNN for detection

Learning a detection CNN requires thousands of images

Supervised training requires to know where all the text instances are

Only in this way we can tell correct detections from false positives (incorrect ones) and false negatives (missing ones)

Generating realistic text in scenes

Much more challenging than generating only text

Easy

Synth Scene Text

Synthetically-augmented real data

Input Image

Synthetic Scene Text Image

A fully-automatic and fast procedure (0.5sec/image) aware of the 3D geometry of the scene

Word and character level annotations possible

800K pre-computed images available for download http://www.robots.ox.ac.uk/~vgg/data/scenetext/

Synth Scene Text pipeline

Step 1: Predict the depth image

Input Image

Depth Image

Monocular depth prediction uses the CNN by [Liu et al., CVPR 2015]

Synth Scene Text pipeline

Step 2: Find homogeneous surfaces

Input Image

Surfaces

Find regions that are likely to belong to the same 3D surface

Goal: avoid straddling occlusion boundaries

Segmentation uses the gPb-UCM regions [Arbelaez et al. PAMI 2011]

Synth Scene Text pipeline

Step 3: Render scene text

Input Image

Virtual scene text

Place the text respecting local geometry and boundaries

Generate text styles as for Synth Text

Blend using Poisson Composition [Perez et al., TOG 2003]

Geometry-aware synthetic text

Comparison with existing datasets

ICDAR 2013 [Karatzas et al., ICDAR 2013]

Street View Text (SVT) [Wang et al., ECCV 2010]

Datasets	Number of Images		Number of Words	
	Train	Test	Train	Test
ICDAR {11,13,15}	229	255	849	1095
SVT	100	249	257	647
Ours	858,750		7,266,866	

A fast CNN for text detection

512-5x5	Conv+ReLU		
512-3x3	Conv+ReLU		
512-3x3	Conv+ReLU		
2x2-str-2	MaxPool		
256-3x3	Conv+ReLU		
256-3x3	Conv+ReLU		
2x2-str-2	MaxPool		
128-3x3	Conv+ReLU		
128-3x3	Conv+ReLU		
2x2-str-2	MaxPool		
128-5x5	Conv+ReLU		
2x2-str-2	MaxPool		
64-5x5	Conv+ReLU		
Input Image			

Our CNN architecture densely regresses text bounding boxes

It combines ideas from

- You Only Look Once (YOLO) [Redmon et al., CVPR 2016]
- Fully Convolutional Network [Long et al., CVPR 2015]

Modifications to YOLO for text detection:

- Denser output for small text instances
- Fully convolutional for high resolution images

Convolutional YOLO

The CNN extract features with a stride of 16 pixels; then a linear convolutional regressor predicts one bounding box per quantised location

The regressor predicts 7 parameters: the detection score and the box geometry

Evaluation

Results

Text Localisation

		ICDAR 11	ICDAR 13	SVT
Neumann	ICCV 13	72.3	-	-
Jaderberg	IJCV 15	76.8	76.8	24.7
Huang	ECCV 15	78	-	-
Zhang	CVPR 15	80	80	-
Ours		82.3	83.0	26.7

End-to-End Text Spotting

		ICDAR 11	ICDAR 13	SVT
Neumann	ICCV 13	45.2	-	-
Jaderberg	IJCV 15	69	76	53
Ours		81.0	84.7	55.7

Importance of realism

Benefit of increasingly complex text generation

Demo

zeus.robots.ox.ac.uk/textspot/

Synthetic data for text recognition

Synthetically-augmented data for text detection

Synthetic data mixing for face/scene retrieval

Compound query retrieval

Search for **specific people** in **specific scenes**

Barack Obama on the **beach**

Arian Foster in the stadium

Abbie Cornish at the ice skating rink

Hybrid CNN

A stream for face identity and a stream for scene type

Where do we get the training data?

WarpNet: Weakly Supervised Matching for Single-view Reconstruction

Scene dataset + people dataset = people in scenes

MIT Places

"airport terminal"

VGG Faces

"Gage Golightly"

Synthetic

[Y. Zhong, R. Arandjelović, A. Zisserman 2016]

"Gage Golightly at the airport terminal"

Step 1

Face detection & keypoint estimation

Step 2

Face search by feature similarity

Step 3

Rerank by pose similarity

Steps 4,5,6

Alignment, Poisson editing, CNN verification

Example substitutions

Example substitutions

Celebrity in Places dataset

Training: synthetic "celebrity in places" + distractors

No. images	16k (+ 58k distractors)
------------	-------------------------

- ► No. celebrities 500
- No. places 16

Evaluation: real "celebrity in places" + distractors

- No. images
 1k (+ 58k distractors)
- No. queries 1015

Descriptors	Faces in places (mAP)		Places only
	unseen	seen	
Baseline	0.381	0.325	0.381
Our CNN	0.640	0.577	0.514

Retrieval examples

Summary

Modern CNNs are powerful but data hungry

- Annotated training data is often a deal breaker
- Learning with less supervision is paramount
- In the mean time, synthetically-augmented data can help

Synth Text

- A purely synthetic dataset of images of words
- State-of-the-art text recognition in real scenes

Synth Scene Text

- Synthetic text embedded in real scenes
- Automatic blending of synthetic and real elements
- Use deep learning to understand the 3D scene geometry
- State-of-the-art text detection in real scenes

Synthetically-augmented data for deep text spotting

In this talk I will discuss synthetic data augmentation as a strategy for generating large quantities of supervised training data for deep learning. This approach combines two common methods: data augmentation, which generates new training images by transforming existing ones, and synthetic data generation, which creates training images using computer graphics. Synthetic data augmentation transforms real images by inserting virtual objects obtained using computer graphics.

I will discuss the importance of realism in synthetic data augmentation, and show how computer vision techniques such as monocular depth estimation can be used to automatically insert virtual objects in a way which is geometrically consistent with a given scene geometry. I will show that by using such techniques it is possible to construct datasets that are orders of magnitude larger than manually collected ones while being sufficiently realistic for the purpose of machine learning for image understanding.

I will demonstrate these ideas in the context of text spotting. First, I will introduce a synthetic dataset, Synth Text, and show how this can be used to train deep state-of-the-art neural network for text recognition in natural scenes without using any real image. Then, I will introduce a synthetically-augmented dataset, Synth Scene Text, and use the latter to train deep networks for text detection in natural scenes.